Browse > Article
http://dx.doi.org/10.12989/smm.2022.9.3.259

Noncontact strain sensing in cement-based material using laser-induced fluorescence from nanotube-based skin  

Meng, Wei (Department of Civil and Environmental Engineering, Rice University)
Bachilo, Sergei M. (Department of Chemistry, Rice University)
Parol, Jafarali (Energy and Building Research Center, Kuwait Institute for Scientific Research)
Weisman, R. Bruce (Department of Chemistry, Rice University)
Nagarajaiah, Satish (Department of Civil and Environmental Engineering, Rice University)
Publication Information
Structural Monitoring and Maintenance / v.9, no.3, 2022 , pp. 259-270 More about this Journal
Abstract
This study explores the use of the recently developed "strain-sensing smart skin" (S4) method for noncontact strain measurements on cement-based samples. S4 sensors are single-wall carbon nanotubes dilutely embedded in thin polymer films. Strains transmitted to the nanotubes cause systematic shifts in their near-infrared fluorescence spectra, which are analyzed to deduce local strain values. It is found that with cement-based materials, this method is hampered by spectral interference from structured near-infrared cement luminescence. However, application of an opaque blocking layer between the specimen surface and the nanotube sensing film enables interference-free strain measurements. Tests were performed on cement, mortar, and concrete specimens with such modified S4 coatings. When specimens were subjected to uniaxial compressive stress, the spectral peak separations varied linearly and predictably with induced strain. These results demonstrate that S4 is a promising emerging technology for measuring strains down to ca. 30 𝜇𝜀 in concrete structures.
Keywords
concrete; near-infrared fluorescence; non-contact strain sensing; single-walled carbon nanotubes; structural health monitoring;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Rodriguez, G., Casas, J.R. and Villalba, S. (2015), "SHM by DOFS in civil engineering: A review", Struct. Monitor. Maint., Int. J., 2(4), 357-382. https://doi.org/10.12989/smm.2015.2.4.357   DOI
2 Sun, P., Bachilo, S.M., Weisman, R.B. and Nagarajaiah, S. (2015), "Carbon nanotubes as non-contact optical strain sensors in smart skins", J. Strain Anal. Eng. Des., 50(7), 505-512. https://doi.org/10.1177/0309324715597414   DOI
3 Sun, P., Bachilo, S.M., Lin, C.W., Weisman, R.B. and Nagarajaiah, S. (2019a), "Noncontact strain mapping using laser-induced fluorescence from nanotube-based smart skin", J. Struct. Eng., (1), 04018238, 1-20. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002227   DOI
4 Li, Z., Dharap, P., Nagarajaiah, S., Barrera, E.V. and Kim, J.D. (2004), "Carbon nanotube film sensors", Adv. Mater., 16(7), 640-643. https://doi.org/10.1002/adma.200306310   DOI
5 Li, H., Xiao, H.G. and Ou, J.P. (2006), "Effect of compressive strain on electrical resistivity of carbon blackfilled cement-based composites", Cement Concrete Compos., 28(9), 824-828. https://doi.org/10.1016/j.cemconcomp.2006.05.004   DOI
6 Li, H.N., Yi, T.H., Ren, L., Li, D.S. and Huo, L.S. (2014), "Reviews on innovations and applications in structural health monitoring for infrastructures", Struct. Monitor. Maint., Int. J., 1(1), 1-45. https://doi.org/10.12989/smm.2014.1.1.001   DOI
7 Loh, K.J., Kim, J., Lynch, J.P., Kam, N.W.S. and Kotov, N.A. (2007), "Multifunctional layer-by-layer carbon nanotube-polyelectrolyte thin films for strain and corrosion sensing", Smart Mater. Struct., 16(2), 429-438. https://doi.org/10.1088/0964-1726/16/2/022   DOI
8 Reich, S., Thomsen, C. and Maultzsch, J. (2004), Carbon Nanotubes: Basic Concepts and Physical Properties, John Wiley & Sons.
9 Colombo, M., Domaneschi, M. and Ghisi, A. (2016), "Existing concrete dams: loads definition and finite element models validation", Struct. Monitor. Maint., Int. J., 3(2), 129-144. https://doi.org/10.12989/smm.2016.3.2.129   DOI
10 Fu, X. and Chung, D.D.L. (1996), "Self-monitoring of fatigue damage in carbon fiber reinforced cement", Cement Concrete Res., 26(1), 15-20. https://doi.org/10.1016/0008-8846(95)00184-0   DOI
11 Leeuw, T.K., Tsyboulski, D.A., Nikolaev, P.N., Bachilo, S.M., Arepalli, S. and Weisman, R.B. (2008), "Strain measurements on individual single-walled carbon nanotubes in a polymer host: structuredependent spectral shifts and load transfer", Nano Letters, 8(3), 826-831. https://doi.org/10.1021/nl072861c   DOI
12 Yang, L. and Han, J. (2000), "Electronic structure of deformed carbon nanotubes", Phys. Rev. Lett., 85(1), 154-157. https://doi.org/10.1103/PhysRevLett.85.154   DOI
13 Weisman, R.B. and Bachilo, S.M. (2003), "Dependence of optical transition energies on structure for singlewalled carbon nanotubes in aqueous suspension: an empirical Kataura plot", Nano Letters, 3(9), 1235-1238. https://doi.org/10.1021/nl034428i   DOI
14 Withey, P.A., Vemuru, V.S.M., Bachilo, S.M., Nagarajaiah, S. and Weisman, R.B. (2012), "Strain paint: Noncontact strain measurement using single-walled carbon nanotube composite coatings", Nano Letters, 12(7), 3497-3500. https://doi.org/10.1021/nl301008m   DOI
15 Xiao, H., Li, H. and Ou, J. (2011), "Strain sensing properties of cement-based sensors embedded at various stress zones in a bending concrete beam", Sensors Actuators A: Phys., 167(2), 581-587. https://doi.org/10.1016/j.sna.2011.03.012   DOI
16 Sun, P., Bachilo, S.M., Lin, C.W., Nagarajaiah, S. and Weisman, R.B. (2019b), "Dual-layer nanotube-based smart skin for enhanced noncontact strain sensing", Struct. Control Health Monitor., 26(1), e2279, 1-11. https://doi.org/10.1002/stc.2279   DOI
17 O'connell, M.J., Bachilo, S.M., Huffman, C.B., Moore, V.C., Strano, M.S., Haroz, E.H., Rialon, K.L., Boul, P.J., Noon, W.H., Kittrell, C. and Ma, J. (2002), "Band gap fluorescence from individual single-walled carbon nanotubes", Science, 297(5581), 593-596. https://doi.org/10.1126/science.1072631   DOI
18 Li, H., Xiao, H. and Ou, J. (2008), "Electrical property of cement-based composites filled with carbon black under long-term wet and loading condition", Compos. Sci. Technol., 68(9), 2114-2119. https://doi.org/10.1016/j.compscitech.2008.03.007   DOI
19 Meng, W., Pal, A., Bachilo, S.M., Weisman, R.B. and Nagarajaiah, S. (2022), "Next-generation 2D optical strain mapping with strain-sensing smart skin compared to digital image correlation", Scientific Reports, 12(1), 1-12. https://doi.org/10.1038/s41598-022-15332-1   DOI
20 Myers, D.R. (2010), "MEMS Resonant Strain Sensor Integration", Ph.D. Dissertation, University of California, Berkeley, CA, USA.
21 Ryu, D. and Loh, K.J. (2014), "Multi-modal sensing using photoactive thin films", Smart Mater. Struct., 23(8), 085011. https://doi.org/10.1088/0964-1726/23/8/085011   DOI
22 Davis, M.A., Bellemore, D.G. and Kersey, A.D. (1997), "Distributed fiber Bragg grating strain sensing in reinforced concrete structural components", Cement Concrete Compos., 19(1), 45-57. https://doi.org/10.1016/s0958-9465(96)00042-x   DOI
23 Bachilo, S.M., Strano, M.S., Kittrell, C., Hauge, R.H., Smalley, R.E. and Weisman, R.B. (2002), "Structureassigned optical spectra of single-walled carbon nanotubes", Sci., 298(5602), 2361-2366. https://doi.org/10.1126/science.1078727   DOI
24 Benedetti, M., Fontanari, V. and Zonta, D. (2011), "Structural health monitoring of wind towers: remote damage detection using strain sensors", Smart Mater. Struct., 20(5), 1-13. https://doi.org/10.1088/0964-1726/20/5/055009   DOI
25 Chung, D.D.L. (2000), "Cement reinforced with short carbon fibers: a multifunctional material", Compos. Part B: Eng., 31(6-7), 511-526. https://doi.org/10.1016/S1359-8368(99)00071-2   DOI
26 Mirzamohammadi, S. and Mazloom, M. (2021), "Monitoring the required energy for the crack propagation of fiber-reinforced cementitious composite", Struct. Monitor. Maint., Int. J., 8(3), 279-294. https://doi.org/10.12989/smm.2021.8.3.279   DOI
27 Dharap, P., Li, Z., Nagarajaiah, S. and Barrera, E.V. (2004), "Nanotube film based on single-wall carbon nanotubes for strain sensing", Nanotechnology, 15(3), 379-382. https://doi.org/10.1088/0957-4484/15/3/026   DOI
28 Gucunski, N., Kee, S., La, H., Basily, B. and Maher, A. (2015), "Delamination and concrete quality assessment of concrete bridge decks using a fully autonomous RABIT platform", Struct. Monitor. Maint., Int. J., 2(1), 19-34. http://doi.org/10.12989/smm.2015.2.1.019   DOI
29 Hill, K.O. and Meltz, G. (1997), "Fiber Bragg grating technology fundamentals and overview", J. Lightwave Technol., 15(8), 1263-1276.https://doi.org/10.1109/50.618320   DOI
30 Meng, W., Bachilo, S.M., Parol, J., Nagarajaiah, S. and Weisman, R.B. (2022), "Near-infrared photoluminescence of Portland cement", Scientific Reports, 12(1), 1-6. https://doi.org/10.1038/s41598-022-05113-1   DOI
31 Nish, A., Hwang, J.Y., Doig, J. and Nicholas, R.J. (2007), "Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers", Nature Nanotechnol., 2(10), 640-646. https://doi.org/10.1038/nnano.2007.290   DOI
32 Obitayo, W. and Liu, T. (2012), "A review: carbon nanotube-based piezoresistive strain sensors", J. Sensors, 2012. https://doi.org/10.1155/2012/652438   DOI