• Title/Summary/Keyword: Emergency maneuver

Search Result 25, Processing Time 0.027 seconds

Basic Study for Stress Analysis Using an Unconstrained BCG Monitoring System (무구속 심탄도 모니터링 시스템을 이용한 스트레스 분석 기초연구)

  • Noh, Yun-Hong;Jeong, Do-Un
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.118-123
    • /
    • 2011
  • Heart related diseases mainly caused by heavy work load and increasing stress in human daily life. Therefore, researches on mobile healthcare monitoring for daily life has been carried out. Notably, wearable healthcare monitoring system which has least restriction has been tried to provide an emergency alert of abnormal heart rate. In this study, we developed chair type unconstrained BCG measurement system which able to perform continuous heart status monitoring at the office and daily life in the unconstrained way. Furthermore, adaptive threshold is used to detect the heart rate from BCG signals. The HRV(heart rate variability) is calculated from heart rate interval. ECG signal measured using conventional method and BCG signal measured using unconstraint system are carried out simultaneously for the purpose of performance evaluation. From the comparison result, BCG signal shows a similar heart beat characteristic as ECG signal. This proves the possibility of practical implementation of unconstraint healthcare monitoring system. In addition, medical examination like valsalva maneuver is performed to observe the changes in HRV due to stress. By performing valsalva maneuver, heart is said to be placed under an artificial physical stress condition. Under this artificial physical stress condition, the time and frequency domain of HRV parameters are evaluated.

A Lane-change Collision Avoidance Algorithm for Autonomous Vehicles and HILS(Hardware-In-the-Loop Simulation) Test (자율주행 차량의 충돌회피 차선변경 제어 알고리즘 개발과 HILS 시험)

  • 류제하;김종협
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.240-248
    • /
    • 1999
  • This paper presents a lane-change collision avoidance control algorithm for autonomous vehicles that will be used in AHS(Automated Highway System). In the proposed control algorithm, nominal control inputs are generated by solving the inverse vehicle dynamic equations of motion for a lane-change maneuver. In addition, a corrective steering input from preview as well as DYC (Direct Yaw Moment Control) may be included to reduce unpredictable errors and to insure yaw directional stability, respectively. The performance of the algorithm is evaluated with an ABS HILS system which consist of 17 DOF vehicle model and real ABS hardware parts. The HILS simulation results show that the proposed algorithm may be used for emergency lane-change maneuvers for autonomous vehicles.

  • PDF

Development of I2V Communication-based Collision Risk Decision Algorithm for Autonomous Shuttle Bus (자율주행 셔틀버스의 통신 정보 융합 기반 충돌 위험 판단 알고리즘 개발)

  • Lee, Seungmin;Lee, Changhyung;Park, Manbok
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.3
    • /
    • pp.19-29
    • /
    • 2019
  • Recently, autonomous vehicles have been studied actively. Autonomous vehicles can detect objects around them using their on board sensors, estimate collision probability and maneuver to avoid colliding with objects. Many algorithms are suggested to prevent collision avoidance. However there are limitations of complex and diverse environments because algorithm uses only the information of attached environmental sensors and mainly depends on TTC (time-to-Collision) parameter. In this paper, autonomous driving algorithm using I2V communication-based cooperative sensing information is developed to cope with complex and diverse environments through sensor fusion of objects information from infrastructure camera and object information from equipped sensors. The cooperative sensing based autonomous driving algorithm is implemented in autonomous shuttle bus and the proposed algorithm proved to be able to improve the autonomous navigation technology effectively.

A Study on A VITD Creation Method using Domestic Thematic Maps : Focusing on Military Topographic Analysis Maps (국내 주제도를 이용한 VITD 생성방안연구 : 군 지형분석지도를 중심으로)

  • Lee, Eun-Seok;Kim, Jong-Bae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.9
    • /
    • pp.2289-2297
    • /
    • 2014
  • There were a lot of attempts in the army to use various domestic thematic maps, but attribute data types of military topographic analysis maps use the FACC of DIGEST, so there is a limit in employing domestic thematic maps with different types of attribute codes. Therefore, this study analyzed the FACC as a data attribute based on the MIL-PRF-89040 of the US Army. Then, VITD was created by changing the attribute codes of domestic thematic maps produced in Korea to fit the FACC. Lastly, it was applied to the analysis of cross-country movement for maneuver defined in FM 5-33 in order to verify if it is applicable in practice. As a result, it was found that the suggested method was helpful in securing the cross-country movement for maneuver. This means that this method can be used not only in producing military topographic analysis maps using domestic thematic maps but in constructing emergency transport routes roads to transport by-products of forest in future.

Delayed Retrobulbar Hemorrhage after Orbital Floor Reconstruction (안와하벽재건술 후 발생한 지연성 눈뒤출혈: 증례보고)

  • Lee, Seung-Woo;Choi, Young-Woong;Nam, Sang-Hyun;Kim, Hoon
    • Archives of Plastic Surgery
    • /
    • v.37 no.4
    • /
    • pp.489-491
    • /
    • 2010
  • Purpose: Retrobulbar hemorrhage is a rare complication followed by blepharoplasty, trauma, orbital reconstruction, and so on. Most of the cases occur within 24 hours, half of them in the first 6 hours. Some authors have reported delayed retrobulbar hemorrhage after blepharoplasty and trauma within 1 day to 9 days. However, there have been few reports of delayed retrobulbar hemorrhage resulting from the complication of orbital reconstruction. Methods: A 22-year-old male underwent orbital floor reconstruction due to the orbital floor fracture. In 84 hours after the surgery, he complained sudden onset orbital pain and decreased visual acuity immediately after defecation. Intraocular pressure was unmeasurable due to the swelling at that time. Emergency computed tomography was performed. Results: Computed tomography revealed subperiosteal hematoma on inferior orbital wall extended to the apex. Emergency decompressive surgery was performed within 1 hour. After evacuation of hematoma, orbital symptom was improved and visual acuity was restored. Conclusion: Delayed retrobulbar hemorrhage is rare but vision-threatening. Therefore early diagnosis and treatment of delayed retrobulbar hemorrhage is thought to be crucial. The cause of delayed hemorrhage was not clear, however, valsalva maneuver might be the cause of hemorrhage.

A Study on Design and Validation of Pilot Activated Recovery System to Recover Aircraft Abnormal Attitude, Altitude and Speed (항공기 비정상 자세, 고도 및 속도 회복을 위한 자동회복장치 설계 및 검증에 관한 연구)

  • Kim, Chong-Sup;Kang, Im-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1302-1312
    • /
    • 2008
  • Relaxed Static Stability(RSS) has been applied to improve flight performance of modern version supersonic jet fighters. Flight control systems are necessary to stabilize an unstable aircraft and to provide adequate handling qualities. Also, flight control systems of modern aircraft employ many safety measure to cope with emergency situations such as a pilot unknown attitude flight conditions of an aircraft in night flight-testing. This situation is dangerous because the aircraft can lose if the pilot not take recognizance of situation. The system called the "Pilot Activated Recovery System" or PARS, provided a pilot initiated automatic maneuver capable of an aircraft recoveries in situations of unusual attitudes, speed and altitude. This paper addresses the concept of PARS with AARS(Automatic Attitude Recovery System), ATCS(Automatic Thrust Control System) and MARES(Minimum Altitude Recovery Estimation System), and this control law is designed by nonlinear control law design process based on model of supersonic jet trainer. And, this control law is verified by real-time pilot evaluation using an HQS(Handling Quality Simulator). The result of evaluation reveals that the these systems support recovery of an aircraft unusual attitude and speed, and improve a safety of an aircraft.

Using an ABS Controller and Rear Wheel Controller for Stability Improvement of a Vehicle (ABS 제어 및 후륜조향 제어기를 이용한 차량 안정성 개선에 관한 연구)

  • Song, Jeong-Hoon;Boo, Kwang-Suck;Lee, Jong-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1125-1134
    • /
    • 2004
  • This paper presents a mathematical model which is about the dynamics of not only a two wheel steering vehicle but a four wheel steering vehicle. A sliding mode ABS control strategy and PID rear wheel control logic are developed to improve the brake and cornering performances, and enhance the stability during emergency maneuvers. The performances of the controllers are evaluated under the various driving road conditions and driving situations. The numerical study shows that the proposed full car model is sufficient to accurately predict the vehicle response. The proposed ABS controller reduces the stopping distance and increases the vehicle stability. The results also prove that the ABS controller can be employed to a four wheel steering vehicle and improves its performance. The four wheel steering vehicle with PID rear wheel controller shows increase of stability when a vehicle speed is high and sharp cornering maneuver when a vehicle speed is low compared to that of a two wheel steer vehicle.

A prototype package for predicting and rapidly responding chemical and nuclear disasters (화학 및 방사능 재난 예측 및 대응 프로그램 개발)

  • Lee, Kwanghee;Moon, Il;Kim, Seungnam;Cho, Sunghyun;Her, Sungyun
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.1
    • /
    • pp.98-104
    • /
    • 2014
  • A new prototype software package has been developed by integrating two existing programs designed to predict and maneuver chemical and nuclear disasters in order to set up a response system for dealing with the combined two disasters. The protype is designed to be mainly used by civil defence officers, together with an identification of 625 scenarios of chemical and nuclear disasters. The package is expected to contribute to upgrade a more systematic regional public protection plan for chemical and nuclear disasters. In addition, it enables all relevant local divisions to share disaster information in real time, resulting in a minimization of possible fatal damages.

A Study on the Design and Validation of Pilot Activated Recovery System to Recovery of an Aircraft Unusual Attitude (항공기 자세회복을 위한 자동회복장치 설계 및 검증에 관한 연구)

  • Kim, Chong-Sup;Cho, In-Je;Kang, Im-Ju;Hur, Gi-Bong;Lee, Eun-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.3
    • /
    • pp.307-317
    • /
    • 2008
  • Relaxed static stability(RSS) concept has been applied to improve aerodynamic performance of modem version supersonic jet fighter aircraft. Therefore, flight control system are necessary to stabilize an unstable aircraft and provides adequate handling qualities. Also, flight control systems of modem version aircraft employ a safety system to support emergency situations such as a pilot unknown attitude flight conditions of an aircraft in night flight-testing. This situation is dangerous because the aircraft can lose if the pilot not take recognizance of situation. Therefore, automatic recovery system is necessary. The system called the "Pilot Activated Recovery System" or PARS, provided a pilot initiated automatic maneuver capable of an aircraft recoveries in situations of unusual attitudes. This paper addresses the concept of PARS and designed using nonlinear control law design process based on model of supersonic jet trainer. And, this control law is verified by nonlinear analysis and real-time pilot evaluation using in-house software. The result of evaluation reveals that the PARS support recovery of an aircraft unusual attitude and improve a safety of an aircraft.

A Study on Improving High-Power Induction Motor Starting (대용량 유도전동기 기동 개선에 관한 연구)

  • Son, Seok-Geum
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.2
    • /
    • pp.178-184
    • /
    • 2016
  • The motor power of the industry to use the electric energy is gradually increased. The electric motor generates a voltage drop in the starting current during startup. The starting current is started it is difficult to have an adverse effect on neighboring power systems with large motor starting when the voltage drop across the power grid. In addition to that the motor torque according to the load depending on the size of the rotation speed is changed to a motor start-up speed is important. However, the distance to the emergency generator transformers or motors from the motor capacity is smaller but short and difficult to maneuver the theory and practice of the operating characteristics of the starting characteristics of the motor used a lot of large industrial plants were measured and analyzed. Therefore, this study investigated the motor starting Analysis and interpretation for the relationship with the large motor starting torque and speed during motor starting.