• Title/Summary/Keyword: Emergency Water

Search Result 428, Processing Time 0.032 seconds

The Analysis about Trouble of GOVERNOR (속도 및 제어시스템의 부조화에 따른 조속기 에러 원인 분석)

  • Ok, Yeon-Ho;Oh, Sueg-Young;Kim, Ki-Won;Byun, Ill-Hwan;Go, Young-Hwan;Im, Seung-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.252-253
    • /
    • 2011
  • Many errors are broken out when hydro power plants are operating connected to electric power system. To minimize ripple effects of accidents, a hydro power plant is separated by a circuit breaker consisting of each protection equipments. In this paper, I will analyze a cause of abnormal events of emergency stop and therefore I take measures and suggest solutions for similar cases.

  • PDF

Study on Utilizing Resources in Environment-friendly City - Operation method of rain storage tank for using rainwater as multipurpose - (친환경 도시에서의 자원활용에 관한 연구 -빗물의 다목적 활용을 위한 빗물저장조의 운전방법 -)

  • 정용현
    • Journal of Environmental Science International
    • /
    • v.12 no.3
    • /
    • pp.359-366
    • /
    • 2003
  • Ecological society and energy conservative systems has become a subject of world wide attention. To examine the technologies of such systems as resource recycling society, this study is proposed for using rainwater as energy source and water resources in urban area. Useful informations for planning of utilizing rainfall as energy source, water resources, emergency water and controlling flood are discussed with model systems in urban area. It is calculated that the rate of utilizing rainwater, amounts of utilizing rainwater, substitution rate of supply water, amounts of overflow rainwater according to rain storage tank volume. By applying the past weather data, The optimum volume of rain water storage was calculated as 200m$^3$ which mean no benefits according to the increase of storage tank volumes. For optimum planing and control method at the model system, several running method of rainwater storage tank was calculated. The optimum operating method was the using weather data as 3hours weather forecast.

A Development of Safety Management System for Water Lines Using GIS

  • Park, Byoung-Gil
    • Korean Journal of Geomatics
    • /
    • v.1 no.1
    • /
    • pp.75-83
    • /
    • 2001
  • Due to the fast industrial growth and unplanned urban underground development in Korea, systematic management for water lines could not be accomplished. Unsystematic water line management has resulted in difficulty in finding the exact location and the age of the lines, which has the potential of leading to a disastrous situation. The objective of this study is a development of safety management system for water lines using GIS. This system is constructed to easily estimate water line deterioration by the geographic output system on it, search for damaged objectives near the surrounding area in a situation of destruction, and offer the emergency information by which one can quickly take action. Also, it is constructed to prevent accidents from occurring during work by presenting underground utilities and states of work.

  • PDF

Hydraulic Adequacy of Connection Pipes in Water Supply Systems for Contingencies (비상시 용수공급을 위한 상수도 연계관로의 수리적 적정성 평가)

  • Han, Wanseob;Jung, Kwansoo;Kim, Juhwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.6
    • /
    • pp.679-687
    • /
    • 2013
  • Although stable and safe drinking water supply to the customers is a basic function of multi-regional water supply systems in Korea, most systems have their vulnerabilities in emergency time due to the branch-type. Application of connections from the other water supply system can provide a solutions for these tentative problems. This paper describes reduction planning of water supply accidents that can minimize a service interruption to customers in multi-regional water supply system by connecting pipe lines between local water supply systems in Mokpo city areas. The result of this study shows that Juam dam multi-regional water supply systems can cover all of the water shortage in southern parts of Jeonnam multi-regional water supply systems by transmitting water through connected pipes between local networks. This can be effective to supply water interactively in various contingencies, when a pipe line accident occurs in southern area of Jeonnam multi-regional water supply systems. On the contrary, southern area of Jeonnam multi-regional water supply systems can cover 99.5 %($62,500m^3/day$) of the water shortage of Juam dam multi-regional water supply systems when service interruptions caused by various pipe accidents occur in the system.

Visualization and contamination analysis for groundwater quality of CDEWSF in Gwangju area using statistical method (통계적 기법을 이용한 광주지역 민방위비상급수용 지하수 수질 오염도 분석 및 시각화 연구)

  • Jang, Seoeun;Lee, Daehaeng;Kim, Jongmin;Kim, Haram;Jeong, Sukkyung;Bae, Seokjin;Cho, Younggwan
    • Analytical Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.122-133
    • /
    • 2018
  • In this study, groundwater quality data measured for 11 years from 2006 to 2016 were analyzed statistically for 101 civil defense emergency water supply facilities (CDEWSF) in the Gwangju area. The contamination level was quantified into four grades by using excess drinking water quality standards, average concentration analysis, and tendency analysis results for each facility. On the basis of this approach, the groundwater contamination degree of each item was evaluated according to land use status, installation year, depth, and geological distribution. The contamination grade ratios, which were obtained by analyzing three contamination indicators (water quality exceeded frequency, average concentration analysis, and trend analysis) for 15 items on statistically significant of civil defense emergency water was relatively high, in the order of Turbidity (51.5 %) > Color (32.7 %) > Nitrate nitrogen (28.7 %) > Hardness (25.7 %). As a result of the contamination grade analysis, except for the items of Turbidity, Color, and Nitrate nitrogen, the contamination levels were distributed in various degrees from "clean (0)" to "seriously contaminated (3)." Regarding the contamination grade of 12 items, 25 % of the total were classified as "possibly contaminated (1)," and 75 % were rated "clean (0)." The four items (Turbidity, Color, Nitrate nitrogen, and Hardness) for which contamination indication rate were evaluated as "high" by the were visualized on a contamination map.

Stability Test Using Froude Scaling Method of Emergency Flotation System for Helicopter (Froude Scaling 기법을 적용한 헬기 비상부주 장비 해수면 안정성 입증 시험)

  • Chang, In-Ki;Ryu, Bo-Seong;Kim, Joung-Hun;Kim, Young-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.12
    • /
    • pp.1089-1096
    • /
    • 2015
  • A marine helicopter should remain sufficiently upright to permit safe evacuation of all personnel with a flotation system. And the rule requires that after ditching in water, the adequate flotation time will allow the occupants to leave the rotorcraft. To this end, stability test of the emergency flotation system for Korean marine helicopter was performed by using "Froude scaling method" in water tank. Test configuration and conditions were determined in consideration of the helicopter loading condition and related specifications. Test results meet the stability requirements at sea state code 4 and sea state code 2 with puncture conditions.

The Study on Development of Emergency Action System against Extreme Flood. (극한홍수 대비 비상대처시스템 구축에 관한 연구)

  • Jeon, Jei-Bok;Lee, Hye-Jin;Kim, Ji-Ho;Lee, Sang-Man
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1482-1488
    • /
    • 2009
  • 최근 전 세계적인 기후변화로 인하여 홍수 해일 지진 등의 자연재해가 거대해지고 빈번하게 발생되고 있다. 이러한 점차 대형화되고 다양화되는 자연재해발생시 국민의 생명과 재산 피해를 최소화하기 위한 다양한 방안이 수립되고 있으며, 특히 풍수해에 대비하기 위한 방안으로써 비상대처계획(Emergency Action Plan, 이하 EAP)수립, 홍수위험지도 및 비상대피지도 등 재해지도 제작, 홍수재해관리시스템 개발 등이 이루어지고 있다. 특히 EAP는 이러한 점차 대형화되고 다양화되는 자연재해에 대비하기 위한 방안으로써, 재해 발생시 국민의 생명과 재산 피해를 최소화하기 위해 시설물 지역의 관리주체 및 유관기관이 발생 가능한 비상상황을 미리 예측하고 대응조치를 신속하고 효율적으로 집행할 수 있도록 구성되어 있으며, 이를 시스템화 한 것이 비상대처시스템(Emergency Action System, 이하 EAS)이라 할 수 있다. 현재 우리나라를 비롯하여 미국, 유럽, 일본 등 선진국을 중심으로 댐 저수지 붕괴에 대비한 EAP 수립을 의무화하고 그 대상 범위를 확장하는 단계에 있으며, 홍수위험지도 및 비상대피지도 제작 등에 있어서 일부 선진국의 경우 다양한 시나리오와 시민의 복합적인 요구를 반영하는 시도를 진행 중에 있다. 또한 일부 선진국의 경우 비상대처계획을 반영한 홍수재해통합관리시스템 구축이 진행중에 있으며, 일본의 경우 첨단기술의 접목을 통해 시민의 대피 시뮬레이션 모델을 개발하는 단계에 이르고 있다. 따라서 본 연구에서는 풍수해에 대비해 수립된 국내 외 EAP, 재해관련 지도, 홍수재해관리시스템 등에 대한 사례조사를 통하여 통합적인 비상대처 및 관리가 가능한 표준화된 EAS 모델의 정립 방향을 모색하고자 한다.

  • PDF

Fundamental study on the development of Filling materials for Trenchless Emergency Restoration of Ground cavity (비개착식 지반공동 긴급복구를 위한 충전재료 개발에 관한 기초 연구)

  • YU, Nam-Jae;Choi, Ju-Hyun;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.97-107
    • /
    • 2017
  • Recently, there have been a lot of incidents related to ground sinks in urban areas, but restoration work is complicated and inconvenience due to on-site control, and particularly, grouting and soil filling are generally applied as recovery measures, but when the grouting or the soil filling is carried out, material segregation phenomenon occurs in the ground or a lot of restoration amount is often required, depending on the state of sinks and the existence of groundwater under the ground and the soil can be lost due to the flow of the ground water, and thus the purpose of this study is to develop a pouch-type filler applied to a trenchless method for emergency reinforcement of the ground sinks with the aim of quick recovery of the ground sink in urban areas, and as a result, it was confirmed that compression strength and the expansion ratio were different according to the temperature of ground water and the compression strength and the expansion ratio could be controlled by mixing alumina powder.

The Effect of Turbulence Penetration on the Thermal Stratification Phenomenon Caused by Coolant Leaking in a T-Branch of Square Cross-Section

  • Choi, Young-Don;Hong, Seok-Woo;Park, Min-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.2
    • /
    • pp.51-60
    • /
    • 2003
  • In the nuclear power plant, emergency core coolant system (ECCS) is furnished at reactor coolant system (RCS) in order to cool down high temperature water in case of emergency. However, in this coolant system, thermal stratification phenomenon can occur due to coolant leaking in the check valve. The thermal stratification produces excessive thermal stresses at the pipe wall so as to yield thermal fatigue crack (TFC) accident. In the present study, effects of turbulence penetration on the thermal stratification into T-branches with square cross-section in the modeled ECCS are analysed numerically. Standard k-$\varepsilon$ model is employed to calculate the Reynolds stresses in momentum equations. Results show that the length and strength of thermal stratification are primarily affected by the leak flow rate of coolant and the Reynolds number of duct. Turbulence penetration into the T-branch of ECCS shows two counteracting effects on the thermal stratification. Heat transport by turbulence penetration from main duct to leaking flow region may enhance thermal stratification while the turbulent diffusion may weaken it.

The Effect of Turbulence Penetration on the Thermal Stratification Phenomenon Caused by Leaking Flow in a T-Branch of Square Cross-Section (난류침투가 사각단면 T분기관 내 누설유동에 의해 발생한 열성층 현상에 미치는 영향)

  • 홍석우;최영돈;박민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.3
    • /
    • pp.239-245
    • /
    • 2003
  • In the nuclear power plant, emergency core coolant system (ECCS) is furnished at reactor coolant system (RCS) in order to cool down high temperature water in case of emergency. However, in this coolant system, thermal stratification phenomenon can occur due to coolant leaking in the check valve. The thermal stratification produces excessive thermal stresses at the pipe wall so as to yield thermal fatigue crack (TFC) accident. In the present study, effects of turbulence penetration on the thermal stratification into T-branches with square cross-section in the modeled ECCS are analysed numerically. $textsc{k}$-$\varepsilon$ model is employed to calculate the Reynolds stresses in momentum equations. Results show that the length and strength of thermal stratification are primarily affected by the leak flow rate of coolant and the Reynolds number of the main flow in the duct. Turbulence penetration into the T-branch of ECCS shows two counteracting effects on the thermal stratification. Heat transport by turbulence penetration from the main duct to leaking flow region may enhance thermal stratification while the turbulent diffusion may weaken it.