DOI QR코드

DOI QR Code

Visualization and contamination analysis for groundwater quality of CDEWSF in Gwangju area using statistical method

통계적 기법을 이용한 광주지역 민방위비상급수용 지하수 수질 오염도 분석 및 시각화 연구

  • Jang, Seoeun (Health and Environment Research Institute of Gwangju) ;
  • Lee, Daehaeng (Health and Environment Research Institute of Gwangju) ;
  • Kim, Jongmin (Health and Environment Research Institute of Gwangju) ;
  • Kim, Haram (Health and Environment Research Institute of Gwangju) ;
  • Jeong, Sukkyung (Health and Environment Research Institute of Gwangju) ;
  • Bae, Seokjin (Health and Environment Research Institute of Gwangju) ;
  • Cho, Younggwan (Health and Environment Research Institute of Gwangju)
  • 장서은 (광주광역시보건환경연구원) ;
  • 이대행 (광주광역시보건환경연구원) ;
  • 김종민 (광주광역시보건환경연구원) ;
  • 김하람 (광주광역시보건환경연구원) ;
  • 정숙경 (광주광역시보건환경연구원) ;
  • 배석진 (광주광역시보건환경연구원) ;
  • 조영관 (광주광역시보건환경연구원)
  • Received : 2018.02.23
  • Accepted : 2018.06.13
  • Published : 2018.06.25

Abstract

In this study, groundwater quality data measured for 11 years from 2006 to 2016 were analyzed statistically for 101 civil defense emergency water supply facilities (CDEWSF) in the Gwangju area. The contamination level was quantified into four grades by using excess drinking water quality standards, average concentration analysis, and tendency analysis results for each facility. On the basis of this approach, the groundwater contamination degree of each item was evaluated according to land use status, installation year, depth, and geological distribution. The contamination grade ratios, which were obtained by analyzing three contamination indicators (water quality exceeded frequency, average concentration analysis, and trend analysis) for 15 items on statistically significant of civil defense emergency water was relatively high, in the order of Turbidity (51.5 %) > Color (32.7 %) > Nitrate nitrogen (28.7 %) > Hardness (25.7 %). As a result of the contamination grade analysis, except for the items of Turbidity, Color, and Nitrate nitrogen, the contamination levels were distributed in various degrees from "clean (0)" to "seriously contaminated (3)." Regarding the contamination grade of 12 items, 25 % of the total were classified as "possibly contaminated (1)," and 75 % were rated "clean (0)." The four items (Turbidity, Color, Nitrate nitrogen, and Hardness) for which contamination indication rate were evaluated as "high" by the were visualized on a contamination map.

본 연구에서는 광주지역 민방위비상급수시설 101 개소를 대상으로 2006년부터 2016년까지 11년 동안 측정한 지하수 수질자료를 통계적으로 분석하였으며, 각 시설별로 먹는물 수질기준 초과횟수와 평균농도 분석 및 경향성 분석을 실시하고, 그 분석결과를 이용하여 4 개의 오염등급으로 구분하였다. 또한 이를 바탕으로 토지이용 현황별로 각 항목의 지하수 오염도를 평가하였다. 통계적으로 유의한 민방위 비상급수 15 개 항목에 대한 수질기준초과횟수, 평균농도분석, 경향성분석의 세가지 오염지시인자를 분석하여 합산한 결과 Turbidity (51.5 %) > Color (32.7 %) > Nitrate nitrogen (28.7 %) > Hardness (25.7 %) 순으로 오염 지시율이 상대적으로 높게 평가되었다. 오염등급 분석결과 안전(0)부터 오염심각(3)까지 오염등급이 다양하게 분포한 Turbidity, Color, Nitrate nitrogen의 3 개 항목을 제외하면 12 개 항목의 수질 오염등급은 전체의 25 %는 '오염가능한 등급(1)'으로, 75%는 '안전한 등급(0)'으로 평가되었다. QGIS를 이용하여 오염 지시율이 높게 평가된 4 개 항목(Turbidity, Color, Nitrate nitrogen, Hardness)은 오염지도에 작성하여 오염등급을 시각화하였다.

Keywords

References

  1. Korea Environment Institute, 'Comparative Study for the Ground Water Management by Its Geologic Condition', 2006.
  2. U. Yun, S. J. Chi, and C. S. SO, Economic and Environmental Geology, 36(6), 441-455 (2003).
  3. Environment White Paper, Gwangju Metropolitan City, 2016.
  4. S. Y. Nam, 'A Study on Hydrogeochemical Interpretation of Longterm Groundwater Data Based on Various Statistical Method', Masters dissertation, Kyungpook National University Korea, Daegu, 2014.
  5. I. H. Sung, 'Study on the Groundwater Remediation of the Kwangju Area', Korea Institute of Geoscience and Mineral Resources, 2001.
  6. C. Y. Park, I. H. Shin, K. S. Ahn, C. S. Lee, Y. J. Jeong, and N. C. Choi, J. Korean Earth Sci. Soc., 20(3), 266-276 (1999).
  7. I. H. Lee, B. W. Cho, B. D. Lee, I. H. Sung, and Y. S. Lim, J. Soil Groundw. Environ., 7(3), 115-132 (2002).
  8. The Ministry of Environment, The Official Test Method of Drinking-Water. Korea, 2015.
  9. G. G. Lee, Development of Quantitative Source Control Technique and Ecosystem Interaction Model for Groundwater Contamination, Gwacheon, Ministry of Environment (2011).
  10. H. S. Yoon, G. O. Bae, and K. K. Lee, 2012, J. Soil Groundw. Environ., 17(1), 22-32 (2012). https://doi.org/10.7857/JSGE.2012.17.1.022
  11. S. S. Shapiro and M. B. wilk, Biometrika, 52(3/4), 591-611 (1965). https://doi.org/10.1093/biomet/52.3-4.591
  12. W. H. Kruskal, W. A. Wallis, J. Am. Stat. Assoc., 47, 583-621 (1592).
  13. H. B. Mann, Non-Parametric Test against Trend. Econometrica, 13, 245-259 (1945).
  14. M. G. Kendall, Rank Correlation Methods, Charles Griffin, London (1975).
  15. P. K. Sen, J. Amer. Stat. Assoc., 63, 1379-1389 (1968). https://doi.org/10.1080/01621459.1968.10480934
  16. M. Craig, D. Daly, Methodology for establishing groundwater threshold values and the assessment of chemical and quantitative status of groundwater, including an assessment of pollution trends and trent reversal, Wexford, Ireland, Environmental Protection Agency (2010).
  17. T. Salmi, A. Maatta, P. Anttila, T. Ruoho-Airola, and T. Amnell, Detecting Trends of Annual Values of Atmospheric Pollutants by The Mann-Kendall Test and Sen's Slope Estimates The Excel Template Application Makesens, Finnish Meteorological Institute, Helsinki (2002).
  18. R. O. Gilbert, Statistical Methods for Environmental Pollution Monitoring, Van Nostrand Rienhold Company, Inc., New York (1987).
  19. J. Y. Lee, M. J. Yi, J. M. Lee, K. H. Ahn, J. H. Won, S. H. Moon, and M. J. Cho, J. Soil Groundw. Environ., 11(2) 56-67 (2006).