• Title/Summary/Keyword: Embryo formation

Search Result 478, Processing Time 0.044 seconds

Effects of Fructose in a Chemically Defined Maturation Medium on Oocyte Maturation and Parthenogenetic Embryo Development in Pigs (돼지 난자의 체외성숙에서 합성배양액에 첨가된 과당이 난자의 성숙 및 단위발생 배아의 체외발육에 미치는 영향)

  • Shin, Hyeji;Kim, Minji;Lee, Joohyeong;Lee, Seung Tae;Park, Choon-Keun;Hyun, Sang-Hwan;Lee, Eunsong
    • Journal of Embryo Transfer
    • /
    • v.32 no.3
    • /
    • pp.139-146
    • /
    • 2017
  • The objective of this study was to determine the effect of fructose that was supplemented to a chemically defined in vitro maturation (IVM) medium on oocyte maturation and embryonic development after parthenogenesis in pigs. The base medium for in vitro maturation (IVM) was porcine zygote medium (PZM) that was supplemented with 0.05% (w/v) polyvinyl alcohol (PVA) or 10% (v/v) porcine follicular fluid (pFF). In the first experiment, when immature pig oocytes were matured in a chemically defined medium that was supplemented with 5.5 mM glucose or with 1.5, 3.0 and 5.5 mM fructose, 3.0 mM fructose resulted in a higher nuclear maturation (91.5%) than 1.5 and 5.5 mM fructose (81.9 and 81.9%, respectively) but showed a similar result with 5.5 mM glucose (94.2%). However, there was no significant differences among groups in the embryo cleavage (89.4-92.4%), blastocyst formation (37.5-41.1%), and mean cell number of blastocyst (30.8-34.2 cells). Fructose at the concentration of 3.0 mM (1.08 pixels/oocyte) resulted in a higher intra-oocyte glutathione (GSH) content than 1.5 and 5.5 mM fructose (1.00 and 0.87 pixels/oocytes, respectively) while the cumulus cell expansion was not influenced. In the second experiment, effect of individual and combined supplementation of a chemically defined maturation medium with 5.5 mM glucose or 3.0 mM fructose was examined. No significant effect was found in the nuclear maturation (86.3-92.6%). Embryo cleavage was significantly increased by the combined supplementation with glucose and fructose (95.2%) compared to that with 3.0 mM fructose only (85.7%) while blastocyst formation (37.3-42.8%) and embryonic cell number (33.3-34.1 cells) were not altered. Effect of supplementation of pFF-containing medium with glucose and fructose + glucose was examined in the third experiment. No significant effect by the supplementation with glucose and fructose or glucose alone was observed in the nuclear maturation of oocytes (90.7-94.1%) and blastocyst formation (51.0-56.5%). Our results demonstrate that 3.0 mM fructose was comparable to 5.5 mM glucose in supporting in vitro oocyte maturation and embryonic development after parthenogenesis and could be used as an alternative energy source to glucose for in vitro maturation of pig oocytes.

Establishment of In-Vitro Culture System for Enhancing Production of Somatic Cell Nuclear Transfer (SCNT) Blastocysts with High Performance in the Colony Formation and Formation of Colonies Derived from SCNT Blastocysts in Pigs

  • Han, Na Rae;Baek, Song;Lee, Yongjin;Lee, Joohyeong;Yun, Jung Im;Lee, Eunsong;Lee, Seung Tae
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.130-138
    • /
    • 2019
  • Although somatic cell nuclear transfer (SCNT)-derived embryonic stem cells (ESCs) in pigs have great potential, their use is limited because the establishment efficiency of ESCs is extremely low. Accordingly, we tried to develop in-vitro culture system stimulating production of SCNT blastocysts with high performance in the colony formation and formation of colonies derived from SCNT blastocysts for enhancing production efficiency of porcine ESCs. For these, SCNT blastocysts produced in various types of embryo culture medium were cultured in different ESC culture medium and optimal culture medium was determined by comparing colony formation efficiency. As the results, ICM of porcine SCNT blastocysts produced through sequential culture of porcine SCNT embryos in the modified porcine zygote medium (PZM)-5 and the PZM-5F showed the best formation efficiency of colonies in α-MEM-based medium. In conclusion, appropriate combination of the embryo culture medium and ESC culture medium will greatly contribute to successful establishment of ESCs derived from SCNT embryos.

Microspore-derived Embryo Formation and Morphological Changes during the Isolated Microspore Culture of Radish (Raphanus sativus L.)

  • Han, NaRae;Kim, Sung Un;Park, Han Young;Na, Haeyoung
    • Horticultural Science & Technology
    • /
    • v.32 no.3
    • /
    • pp.382-389
    • /
    • 2014
  • Raphanus sativus L. cv. Taebaek, a efficiently microspore-derived embryo (MDE)-forming cultivar, and 'Chungwoon', a non-MDE-forming cultivar were selected as donor plants for isolated microspore culture. Radish flower bud of 2.0 (small, S), 4.0 (medium, M), and 6.0 (large, L) ${\pm}$ 0.5 mm in length were isolated to determine the temporal relationship between flower bud size and MED yield. Anatomical observations revealed no difference in the structure of the flower buds between the two cultivars. In both cultivars, the stigmas were much longer than the floral leaf in M-sized flower buds. The MDE yields for 'Taebaek' per petri dish were 6.6 and 1.3 for M- and L-sized of flower buds, respectively, but MDE formation was not induced in the S flower buds. On the other hand, 'Chungwoon' failed to form MDEs in all flower buds. The microspore density of 'Taebaek' was 1.3 times more than that of 'Chungwoon' for M sized flower buds. Of the M-sized buds from 'Taebaek' and 'Chungwoon', 92.1 and 81.6%, respectively, were in the late uninucleate microspore stage, which is characterized by the highest frequency of MDE formation. Anatomical observations of MDE formation revealed that the microspores were able to divide to form a primordium from which cell division took place continuously in the 'Teabeak' cultivar. However, the microspores of 'Chungwoon' failed to progress beyond the primodium stage, resulting in lack of MDE formation. By contrast, after the formation of the primordium, various developmental stages of embyos from microspore were observed in the 'Taebaek' cultivar. These results can be used to determine MDE forming potentials of radish cultivars.

Mesodermal Patterning in Ascidian Embryos

  • 김길중
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.37-42
    • /
    • 2002
  • In ascidians, a primitive chordate, maternal cytoplasmic factors and inductive interactions are involved in the specification of cell fate in early embryos. The larval structure of ascidians is relatively simple, and the major mesodermal tissues of the tadpole larva are notochord, muscle and mesemchyme. Formation of muscle cells is a cell-autonomous process, and localized maternal macho-1 mRNA specify muscle fate in the posterior marginal zone of the early embryo. In contrast, inductive influence from endoderm precursors plays important roles in the specification of notochord and mesenchyme fates. FGF-Ras-MAPK signaling is involved in the induction of both tissues. The difference in responsiveness of the posterior mesenchyme and anterior notochord precursors is caused by the presence or absence of the posterior-vegetal egg cytoplasm, respectively. In these cases, directed signal may polarizes the responding cells and cause asymmetric cell divisions that operate in both the anterior and posterior regions.

  • PDF

Effect of Heat Shock on Culture Method and Essential Amino Acid Free Medium of IVM-Derived Bovine Embryo (체외성숙된 소 배에서 배양방법과 필수 아미노산 무첨가 배지에서의 온도충격의 영향)

  • 김지철;김재영;주재홍;윤산헌;이상민;이상진;김재명;송해범;박흠대
    • Journal of Embryo Transfer
    • /
    • v.16 no.1
    • /
    • pp.41-46
    • /
    • 2001
  • This study was carried out to evaluate the effect of culture methods on development of embryos with each developmental stage after heat shock in bovine oocytes. The results obtained were as fellows. 1. The culture method after heat shock on development of embryos was better drop-culture than co-culture. 2. The medium without amino acids were not effect of heat sock on development of embryos but it was in need of amino acid during formation of blastocyst.

  • PDF

Differential Effect of Hexoses on in Vitro Culture of Porcine and Bovine Nuclear Transferred Emrbyos

  • J. Kwun;S.H. Hyun;K.H. Jang;Park, E.S;Park, J.I.;Lee, E.S.;S.K. Kang;Lee, B.C.;W.S. Hwang
    • Proceedings of the KSAR Conference
    • /
    • 2001.10a
    • /
    • pp.55-55
    • /
    • 2001
  • Monosaccaride hexose, may have different role in embryo development of different species. Glucose, fructose and galactose are glycolysible substrates but their effect on embryo development is not identical. Glucose has negative effect to early embryonic stage in several species whereas it is inevitable after compaction. For fructose, it can support blastocyst formation in hamster, mouse and bovine embryo. Effect of galactose is known as detrimental even at a low concentration while glucose has adverse effect only at high concentration in hamster. (omitted)

  • PDF

Origin of Somatic Embryo Induced from Cotyledons of Zygotic Embryos at Various Developmental Stages of Ginseng

  • Soh, Woong-Young
    • Journal of Plant Biology
    • /
    • v.37 no.3
    • /
    • pp.365-370
    • /
    • 1994
  • Excised cotyledon segments of ginseng zygotic embryos at various developmental stages were cultured on MS basal medium from which somatic embryos were directly induced. The frequency of somatic embryo formation on the segments declined with the advancing zygotic embryo maturity. All of the cells in the cotyledons of immature zygotic embryos were smaller and more densely cytoplasmic than those in mature embryos. Histological examinations revealed that the poly-somatic embryos formed on immature embryos were of multi-cell originand derived from the epidermal and subepidermal cell layers. However, in the cotyledon of germinating zygotic embryos, only theepidermal cells were densely cytoplasmic and singularly competent to develop into somatic embryos resulting into single embryos at a frequency of 100%.

  • PDF

Vascular Differentiation in the Mature Embryo and the Seedling of Ginkgo biloba L. (은행나무의 성숙배 및 유식물에 있어서 유관속조직의 분화)

  • 홍성식
    • Journal of Plant Biology
    • /
    • v.26 no.4
    • /
    • pp.207-216
    • /
    • 1983
  • Mature embryo and developing seedlings of Ginkgo biloba L. were embedded in a paraplast and serially sectioned at 10${\mu}{\textrm}{m}$ to examine vascular differentiation and vascular transition. Procambium and protophloem formed a continuous system along the epicotylhypocotyl root axis and cotyledons in mature embryo, whereas protoxylem was differentiated discontinuously in the cotyledons and rarely in the upper hypocotyl. The traces of the first and second leaf primordia apeared almost at the same time oppositely to each otehr at the epicotyl and alternately with the cotyledon traces in the upper hypocotyl. The trace differentiated bidirectionally toward the epicotyl and root tips. the young root initially formed a diarch xylem. Then, as the traces of the first and second leaves were superimposed, the diarch xylem. Then, as the traces of the first and second leaves were superimposed, the diarch xylem of the root was changed totriarch and tetrarch xylem, respectively. On the formation of primary vascular system of Ginkgo biloba, it is suggested that the primary phloem forms a continuous system throughout the seedling, whereas the primary xylem of the epicotyl is formed independently from that of the root-hypocotyl cotyledon system.

  • PDF

Overview of Secondary Neurulation

  • Catala, Martin
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.3
    • /
    • pp.346-358
    • /
    • 2021
  • Secondary neurulation is a morphological process described since the second half of the 19th century; it accounts for the formation of the caudal spinal cord in mammals including humans. A similar process takes place in birds. This form of neurulation is caused by the growth of the tail bud region, the most caudal axial region of the embryo. Experimental work in different animal species leads to questioning dogmas widely disseminated in the medical literature. Thus, it is clearly established that the tail bud is not a mass of undifferentiated pluripotent cells but is made up of a juxtaposition of territories whose fate is different. The lumens of the two tubes generated by the two modes of neurulation are continuous. There seem to be multiple cavities in the human embryo, but discrepancies exist according to the authors. Finally, the tissues that generate the secondary neural tube are initially located in the most superficial layer of the embryo. These cells must undergo internalization to generate the secondary neurectoderm. A defect in internalization could lead to an open neural tube defect that contradicts the dogma that a secondary neurulation defect is closed by definition.

Follistatins have potential functional role in Porcine Embryogenesis

  • Kim, Dong-Hee;Chun, Ju Lan;Lee, Ji Hye;Kim, Keun Jung;Kim, Eun Young;Lee, Bo Myeong;Zhuang, Lili;Kim, Min Kyu
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.1
    • /
    • pp.52-60
    • /
    • 2016
  • In animal reproduction, the quality of oocytes and embryos has been evaluated by the expression of specific molecules. Follistatin (FST), which was isolated from follicular fluid, binds and bio-neutralizes the TGF-${\beta}$ superfamily members. Previous studies using the bovine model showed FST could be an important molecular determinant of embryo developmental competence. However, the effect of FST treatment on porcine embryo developmental competence has not been established. In this study, the effect of exogenous FST on porcine embryo developmental competence was investigated during in vitro culture. FST (10 ng/ml) treatment induced a significant decrease in the rate of cell arrest at the 4-cell stage. The expression levels of DNA-methyltransferase 1 (DNMT1), histone deacetylase 1 (HDAC1), and histone deacetylase 2 (HDAC2) were decreased in 4-cell stage embryos. FST treatment also resulted in significant improvements in developmental competence of embryos in terms of blastocyst formation rate and OCT-4 mRNA levels, the latter being related to pluripotency. In conclusion, during in vitro culture, FST treatment significantly ameliorated 4-cell block during embryonic development and improved embryo developmental competence. Therefore, FST treatment may potentially have a functional role in porcine embryogenesis that is broadly applicable to enhance in vitro embryo development.