• Title/Summary/Keyword: Embedded depth

Search Result 371, Processing Time 0.027 seconds

Probing of Steel Bar Inside Mortar Specimens Using Electromagnetic Wave Method (전자기파를 이용한 모르타르 시편 내 철근탐사)

  • 김우석;박경현;임홍철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.663-666
    • /
    • 1999
  • Ground Penetrating Radar (GPR) attached with 1 GHz center frequency antenna has been used to measure a dielectric constant of mortar, and to detect and locate a steel bar embedded inside laboratory size mortar specimens at various depth. Mortar specimens are made for the measurements with the dimensions of 100cm (width)$\times$100cm (length)$\times$14cm (depth). Each specimen has a 13mm diameter D13 steel bar at 2, 4, 6, 8, 10 and 12cm depth. In this paper, results of radar measurments are provided with a sample output, which successfully located the bar. It has been found that the reflected wave of the steel bar interacts with that of surface when the steel bar has the close distance to the surface.

  • PDF

Seismic Behavior Analysis of a Bridge Considering Bridge Scour (기초세굴의 영향을 고려한 교량시스템의 지진거동분석)

  • 김상효;마호성;이상우;김호상
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.537-544
    • /
    • 2001
  • Bridge dynamic behaviors are examined under seismic excitations including the local scour effect. The corresponding simplified mechanical model, which can also consider the effect of other influence elements, is proposed to simulate the bridge motions. The scour depth around the pier is estimated by the CSU equation recommended by the HEC-18, and the local scour effect upon global bridge motions is then investigated by applying various foundation stiffness based upon the reduced embedded depths. From the results, it is found that seismic responses of a bridge with the same scour depth level for both piers increase as the scour depth increase due to the local scour effect. The scour effect is found to be significant under weak excitations and still to be quite notable even for moderate excitations.

  • PDF

Uplift capacity of single vertical belled pile embedded at shallow depth

  • Jung-goo Kang;Young-sang Kim;Gyeongo Kang
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.165-179
    • /
    • 2023
  • This study investigates the uplift capacity of a single vertical belled pile buried at shallow depth in dry sand. The laboratory model experiments are conducted with different pile-tip angles and relative densities. In addition, image and FEM analyses are performed to observe the failure surface of the belled pile for different pile-tip angles and relative densities. Accordingly, the uplift capacity and failure angle in the failure surface of the belled pile were found to depend on the belled pile-tip angle and relative density. A predictive model for the uplift capacity of the belled pile was proposed considering the relative density and belled pile-tip angle based on a previous limit equilibrium equation. To validate the applicability of the proposed model, the values calculated using the proposed and previous models were compared to those obtained through a laboratory model experiment. The proposed model had the best agreement with the laboratory model experiment.

Terahertz Nondestructive Time-of-flight Imaging with a Large Depth Range

  • Kim, Hwan Sik;Kim, Jangsun;Ahn, Yeong Hwan
    • Current Optics and Photonics
    • /
    • v.6 no.6
    • /
    • pp.619-626
    • /
    • 2022
  • In this study, we develop a three-dimensional (3D) terahertz time-of-flight (THz-TOF) imaging technique with a large depth range, based on asynchronous optical sampling (ASOPS) methods. THz-TOF imaging with the ASOPS technique enables rapid scanning with a time-delay span of 10 ns. This means that a depth range of 1.5 m is possible in principle, whereas in practice it is limited by the focus depth determined by the optical geometry, such as the focal length of the scan lens. We characterize the spatial resolution of objects at different vertical positions with a focal length of 5 cm. The lateral resolution varies from 0.8-1.8 mm within the vertical range of 50 mm. We obtain THz-TOF images for samples with multiple reflection layers; the horizontal and vertical locations of the objects are successfully determined from the 2D cross-sectional images, or from reconstructed 3D images. For instance, we can identify metallic objects embedded in insulating enclosures having a vertical depth range greater than 30 mm. For feasible practical use, we employ the proposed technique to locate a metallic object within a thick chocolate bar, which is not accessible via conventional transmission geometry.

Signal Characteristics of Multi-coil Probe for the Test of Reinforcement Embedded in Concrete (다중 코일에 의한 콘크리트내의 철근 탐지 시 신호 특성)

  • Kim, Young-Joo;Lee, Seung-Seok;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.4
    • /
    • pp.285-289
    • /
    • 2000
  • This study suggests a rebar detection technique for simultaneous detection of size and cover of embedded reinforcement in concrete. The structure of the probe made in this study is somewhat different from commercial ones. This probe has three sensing coils. Rebar size and cover depth can be evaluated by detecting and analyzing the signal from them. Amplitude and phase variation of each coil in the probe was investigated using an impedance analyzer and the loci of transfer functions of the coils were analyzed. The locus of transfer function from the sensing coil positioned inside excitation coil was simple as well known, but the others from the coils outside excitation coil were not so. Actual experiment on rebar detection was performed with our probe and an eddy current test system for various rebar sizes and depths. The signal shape according to variation of cover depths showed the same tendency with the transfer function loci acquired by impedance analyzer. The different variation pattern of signal enabled to evaluate rebar size and cover depth simultaneously.

  • PDF

A Model Test on the Settlements of Adjacent Structures by Excavation (모형실험을 통한 굴착시 인접 구조물의 침하량 평가)

  • 석정우;최광철;김운영;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.17-27
    • /
    • 1999
  • It comes to be an important point to judge precisely the effects of excavation on adjacent ground and structures. It is incorrect to evaluate the ground settlement by excavation without considering the adjacent structure. In this study, laboratory scale tests were carried out by varying the position of structure under the condition of different system stiffness and wall friction to evaluate the behavior of adjacent structures and ground by excavation. When the distance between the structures and the wall was less than 0.3 times of the excavation depth, the ground settlement increased by 181%. No additional effect was observed when the distance was more than 1.0H. As the embedded depth was deeper, the influence zone was smaller, and few additional settlements and angular displacement were observed when the embedded depth was more than 0.75H.

  • PDF

Color-Based Real-Time Hand Region Detection with Robust Performance in Various Environments (다양한 환경에 강인한 컬러기반 실시간 손 영역 검출)

  • Hong, Dong-Gyun;Lee, Donghwa
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.6
    • /
    • pp.295-311
    • /
    • 2019
  • The smart product market is growing year by year and is being used in many areas. There are various ways of interacting with smart products and users by inputting voice recognition, touch and finger movements. It is most important to detect an accurate hand region as a whole step to recognize hand movement. In this paper, we propose a method to detect accurate hand region in real time in various environments. A conventional method of detecting a hand region includes a method using depth information of a multi-sensor camera, a method of detecting a hand through machine learning, and a method of detecting a hand region using a color model. Among these methods, a method using a multi-sensor camera or a method using a machine learning requires a large amount of calculation and a high-performance PC is essential. Many computations are not suitable for embedded systems, and high-end PCs increase or decrease the price of smart products. The algorithm proposed in this paper detects the hand region using the color model, corrects the problems of the existing hand detection algorithm, and detects the accurate hand region based on various experimental environments.

A Study on Standard Design Procedure and Optimum Dimension of Embedded Steel-Plate Cell Structure (근입식 강판셀 구조 설계표준화 및 최적제원 결정에 관한 연구)

  • Park, Yong Myung;Kim, Tae Jin
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.3 s.40
    • /
    • pp.259-270
    • /
    • 1999
  • In this study, establishment of standard design procedure and optimum dimension of the embedded steel-plate cellular bulkheads for seawall structures in deep water sites has been presented. A computer program was developed to asses feasible dimensions of steel-plate cell, and general equations to determine optimum cell diameter and embedment depth are derived for sand. A model experiment to verify the necessary driving force of vibratory hammer system was also performed and driving force data pertinent to optimum cell dimension are presented.

  • PDF

Characteristics of direct laser micromachining of IC substrates using a nanosecond UV laser (나노초 UV 레이저 응용 IC 기판 소재 조성별 가공 특성)

  • Sohn, Hyon-Kee;Shin, Dong-Sig;Choi, Ji-Yeon
    • Laser Solutions
    • /
    • v.15 no.3
    • /
    • pp.7-10
    • /
    • 2012
  • Dimensions (line/space) of circuits in IC substrates for high-end chips (e.g. CPU, etc.) are anticipated to decrease as small as $10{\mu}m/10{\mu}m$ in 2014. Since current etch-based circuit-patterning processes are not able to address the urgent requirement from industry, laser-based circuit patterning processes are under active research in which UV laser is used to engrave embedded circuits patterns into IC substrates. In this paper, we used a nanosecond UV laser to directly fabricate embedded circuit patterns into IC substrates with/without ceramic powders. In experiments, we engraved embedded circuit patterns with dimensions (width/depth) of abut $10{\mu}m/10{\mu}m$ and $6{\mu}m/6{\mu}m$ into the IC substrates. Due to the recoil pressure occurring during ablation, the circuit patterning of the IC substrates with ceramic powders showed the higher ablation rate.

  • PDF

CPT-based lateral displacement analysis using p-y method for offshore mono-piles in clays

  • Kim, Garam;Park, Donggyu;Kyung, Doohyun;Lee, Junhwan
    • Geomechanics and Engineering
    • /
    • v.7 no.4
    • /
    • pp.459-475
    • /
    • 2014
  • In this study, a CPT-based p-y analysis method was proposed for the displacement analysis of laterally loaded piles. Key consideration was the continuous soil profiling capability of CPT and cone resistance profiles that do not require artificial assumption or simplification for input parameter selection. The focus is on the application into offshore mono-piles embedded in clays. The correlations of p-y function components to the effective cone resistance were proposed, which can fully utilize CPT measurements. A case example was selected from the literature and used to validate the proposed method. Various parametric studies were performed to examine the effectiveness of the proposed method and investigate the effect of property profile and its depth resolution on the p-y analysis. It was found that the calculation could be largely misleading if wrongly interpreted sub-layer condition or inappropriate resolution of input soil profile was involved in the analyses. It was also found that there is a significant influence depth that dominates overall load response of pile. The soil profile and properties within this depth range affect most significantly calculated load responses, confirming that the soil profile within this depth range should be identified in more detail.