• Title/Summary/Keyword: Embedded data

Search Result 2,136, Processing Time 0.029 seconds

An Accurate Stock Price Forecasting with Ensemble Learning Based on Sentiment of News (뉴스 감성 앙상블 학습을 통한 주가 예측기의 성능 향상)

  • Kim, Ha-Eun;Park, Young-Wook;Yoo, Si-eun;Jeong, Seong-Woo;Yoo, Joonhyuk
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.1
    • /
    • pp.51-58
    • /
    • 2022
  • Various studies have been conducted from the past to the present because stock price forecasts provide stability in the national economy and huge profits to investors. Recently, there have been many studies that suggest stock price prediction models using various input data such as macroeconomic indicators and emotional analysis. However, since each study was conducted individually, it is difficult to objectively compare each method, and studies on their impact on stock price prediction are still insufficient. In this paper, the effect of input data currently mainly used on the stock price is evaluated through the predicted value of the deep learning model and the error rate of the actual stock price. In addition, unlike most papers in emotional analysis, emotional analysis using the news body was conducted, and a method of supplementing the results of each emotional analysis is proposed through three emotional analysis models. Through experiments predicting Microsoft's revised closing price, the results of emotional analysis were found to be the most important factor in stock price prediction. Especially, when all of input data is used, error rate of ensembled sentiment analysis model is reduced by 58% compared to the baseline.

Product Nutrition Information System for Visually Impaired People (시각 장애인을 위한 상품 영양 정보 안내 시스템)

  • Jonguk Jung;Je-Kyung Lee;Hyori Kim;Yoosoo Oh
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.5
    • /
    • pp.233-240
    • /
    • 2023
  • Nutrition information about food is written on the label paper, which is very inconvenient for visually impaired people to recognize. In order to solve the inconvenience of visually impaired people with nutritional information recognition, this paper proposes a product nutrition information guide system for visually impaired people. In the proposed system, user's image data input through UI, and object recognition is carried out through YOLO v5. The proposed system is a system that provides voice guidance on the names and nutrition information of recognized products. This paper constructs a new dataset that augments the 319 classes of canned/late-night snack product image data using rotate matrix techniques, pepper noise, and salt noise techniques. The proposed system compared and analyzed the performance of YOLO v5n, YOLO v5m, and YOLO v5l models through hyperparameter tuning and learned the dataset built with YOLO v5n models. This paper compares and analyzes the performance of the proposed system with that of previous studies.

The extension of the largest generalized-eigenvalue based distance metric Dij1) in arbitrary feature spaces to classify composite data points

  • Daoud, Mosaab
    • Genomics & Informatics
    • /
    • v.17 no.4
    • /
    • pp.39.1-39.20
    • /
    • 2019
  • Analyzing patterns in data points embedded in linear and non-linear feature spaces is considered as one of the common research problems among different research areas, for example: data mining, machine learning, pattern recognition, and multivariate analysis. In this paper, data points are heterogeneous sets of biosequences (composite data points). A composite data point is a set of ordinary data points (e.g., set of feature vectors). We theoretically extend the derivation of the largest generalized eigenvalue-based distance metric Dij1) in any linear and non-linear feature spaces. We prove that Dij1) is a metric under any linear and non-linear feature transformation function. We show the sufficiency and efficiency of using the decision rule $\bar{{\delta}}_{{\Xi}i}$(i.e., mean of Dij1)) in classification of heterogeneous sets of biosequences compared with the decision rules min𝚵iand median𝚵i. We analyze the impact of linear and non-linear transformation functions on classifying/clustering collections of heterogeneous sets of biosequences. The impact of the length of a sequence in a heterogeneous sequence-set generated by simulation on the classification and clustering results in linear and non-linear feature spaces is empirically shown in this paper. We propose a new concept: the limiting dispersion map of the existing clusters in heterogeneous sets of biosequences embedded in linear and nonlinear feature spaces, which is based on the limiting distribution of nucleotide compositions estimated from real data sets. Finally, the empirical conclusions and the scientific evidences are deduced from the experiments to support the theoretical side stated in this paper.

Efficient Flash Memory Access Power Reduction Techniques for IoT-Driven Rare-Event Logging Application (IoT 기반 간헐적 이벤트 로깅 응용에 최적화된 효율적 플래시 메모리 전력 소모 감소기법)

  • Kwon, Jisu;Cho, Jeonghun;Park, Daejin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.2
    • /
    • pp.87-96
    • /
    • 2019
  • Low power issue is one of the most critical problems in the Internet of Things (IoT), which are powered by battery. To solve this problem, various approaches have been presented so far. In this paper, we propose a method to reduce the power consumption by reducing the numbers of accesses into the flash memory consuming a large amount of power for on-chip software execution. Our approach is based on using cooperative logging structure to distribute the sampling overhead in single sensor node to adjacent nodes in case of rare-event applications. The proposed algorithm to identify event occurrence is newly introduced with negative feedback method by observing difference between past data and recent data coming from the sensor. When an event with need of flash access is determined, the proposed approach only allows access to write the sampled data in flash memory. The proposed event detection algorithm (EDA) result in 30% reduction of power consumption compared to the conventional flash write scheme for all cases of event. The sampled data from the sensor is first traced into the random access memory (RAM), and write access to the flash memory is delayed until the page buffer of the on-chip flash memory controller in the micro controller unit (MCU) is full of the numbers of the traced data, thereby reducing the frequency of accessing flash memory. This technique additionally reduces power consumption by 40% compared to flash-write all data. By sharing the sampling information via LoRa channel, the overhead in sampling data is distributed, to reduce the sampling load on each node, so that the 66% reduction of total power consumption is achieved in several IoT edge nodes by removing the sampling operation of duplicated data.

The Effective Test for Embedded S/W by using Data-Driven Method (Data-Driven 방식의 효과적인 임베디드 S/W 테스트 방법에 관한 연구)

  • Kwon, Kyu-Hwan
    • 한국IT서비스학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.505-510
    • /
    • 2009
  • 전자, 자동차 등 엔지니어링 컨버전스 산업이 발전함에 따라 임베디드 S/W 테스트의 중요성이 증가하고 있다. 그러나, 일반적인 S/W 테스트 방법을 그대로 이용할 경우 임베디드 디바이스의 특성으로 인해 일반적인 품질 수준의 테스트 결과를 얻기 위해 상대적으로 더 많은 비용과 시간을 필요로 하게 된다. 따라서, 다양한 임베디드 시스템의 환경에 적용하기 쉽고, 임베디드 디바이스의 특성에 잘 대응하는 테스트 방법이 요구되는 실정이다. 본 논문에서는 Data-Driven 기법을 이용한 효과적인 임베디드 테스트 자동화 기법을 제안한다.

  • PDF

Improving development environment for embedded software (내장 소프트웨어를 위한 개발 환경의 개선)

  • AHN, ILSOO
    • Journal of Software Engineering Society
    • /
    • v.25 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • RFID systems have been widely used in various fields such as logistics, distribution, food, security, traffic and others. A RFID middleware, one of the key components of the RFID system, perform an important role in many functions such as filtering, grouping, reporting tag data according to given user specifications and so on. However, manual test data generation is very hard because the inputs of the RFID middleware are generated according to the RFID middleware standards and complex encoding rules. To solve this problem, in this paper, we propose a black box test technique based on RFID middleware standards. Firstly, we define ten types of input conversion rules to generate new test data from existing test data based on the standard specifications. And then, using these input conversion rules, we generate various additional test data automatically. To validate the effectiveness of generated test data, we measure coverage of generated test data on actual RFID middleware. The results show that our test data achieve 78% statement coverage and 58% branch coverage in the classes of filtering and grouping, 79% statement coverage and 64% branch coverage in the classes of reporting.

  • PDF

Improvement of Catastrophic Forgetting using variable Lambda value in EWC (가변 람다값을 이용한 EWC에서의 치명적 망각현상 개선)

  • Park, Seong-Hyeon;Kang, Seok-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.27-35
    • /
    • 2021
  • This paper proposes a method to mitigate the Catastrophic Forgetting phenomenon in which artificial neural networks forget information on previous data. This method adjusts the Regularization strength by measuring the relationship between previous data and present data. MNIST and EMNIST data were used for performance evaluation and experimented in three scenarios. The experiment results showed a 0.1~3% improvement in the accuracy of the previous task for the same domain data and a 10~13% improvement in the accuracy of the previous task for different domain data. When continuously learning data with various domains, the accuracy of all previous tasks achieved more than 50% and the average accuracy improved by about 7%. This result shows that neural network learning can be properly performed in a CL environment in which data of different domains are successively entered by the method of this paper.

Design and Implementation of Interactive Game based on Embedded System (내장형 시스템 기반 체험형 게임의 설계 및 구현)

  • Lee, Woosik;Jung, Hoejung;Heo, Hojin;Kim, Namgi
    • Journal of Internet Computing and Services
    • /
    • v.18 no.4
    • /
    • pp.43-50
    • /
    • 2017
  • Embedded System includes touch, GPS, motion, and acceleration sensor, and can communicate with neighbor devices using wireless communication. Because Arduino with embedded system provides good environment for development and application, developers, engineers, designers, as well as artists, students have a great interest. They utilize Arduino in the robot, home appliances, fashion, culture and so on. In this paper, we design and implement a game using Arduino with embedded system which recognizes the human movement by moving away from one-dimensional game of the existing touch method. Implemented embedded system game measures gyro-sensor to recognize human movement and detects the attack success of the opponent by using touch sensor. Moreover, health of the game player is updated in the real time through the android phone-based database. In this paper, implemented embedded system-based game provides GUI screen of android phone. It is possible to select watching mode and competition mode. Also, it has low energy consumption and easy to expand because it send and receive data packet through recent Bluetooth communication.

Intermediate-Representation Translation Techniques to Improve Vulnerability Analysis Efficiency for Binary Files in Embedded Devices (임베디드 기기 바이너리 취약점 분석 효율성 제고를 위한 중간어 변환 기술)

  • Jeoung, Byeoung Ho;Kim, Yong Hyuk;Bae, Sung il;Im, Eul Gyu
    • Smart Media Journal
    • /
    • v.7 no.1
    • /
    • pp.37-44
    • /
    • 2018
  • Utilizing sequence control and numerical computing, embedded devices are used in a variety of automated systems, including those at industrial sites, in accordance with their control program. Since embedded devices are used as a control system in corporate industrial complexes, nuclear power plants and public transport infrastructure nowadays, deliberate attacks on them can cause significant economic and social damages. Most attacks aimed at embedded devices are data-coded, code-modulated, and control-programmed. The control programs for industry-automated embedded devices are designed to represent circuit structures, unlike common programming languages, and most industrial automation control programs are designed with a graphical language, LAD, which is difficult to process static analysis. Because of these characteristics, the vulnerability analysis and security related studies for industry automation control programs have only progressed up to the formal verification, real-time monitoring levels. Furthermore, the static analysis of industrial automation control programs, which can detect vulnerabilities in advance and prepare for attacks, stays poorly researched. Therefore, this study suggests a method to present a discussion on an industry automation control program designed to represent the circuit structure to increase the efficiency of static analysis of embedded industrial automation programs. It also proposes a medium term translation technology exploiting LLVM IR to comprehensively analyze the industrial automation control programs of various manufacturers. By using LLVM IR, it is possible to perform integrated analysis on dynamic analysis. In this study, a prototype program that converts to a logical expression type of medium language was developed with regards to the S company's control program in order to verify our method.

Design and Implementation of a 128-bit Block Cypher Algorithm SEED Using Low-Cost FPGA for Embedded Systems (내장형 시스템을 위한 128-비트 블록 암호화 알고리즘 SEED의 저비용 FPGA를 이용한 설계 및 구현)

  • Yi, Kang;Park, Ye-Chul
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.7
    • /
    • pp.402-413
    • /
    • 2004
  • This paper presents an Implementation of Korean standard 128-bit block cipher SEED for the small (8 or 16-bits) embedded system using a low-cost FPGA(Field Programmable Gate Array) chip. Due to their limited computing and storage capacities most of the 8-bits/16-bits small embedded systems require a separate and dedicated cryptography processor for data encryption and decryption process which require relatively heavy computation job. So, in order to integrate the SEED with other logic circuit block in a single chip we need to invent a design which minimizes the area demand while maintaining the proper performance. But, the straight-forward mapping of the SEED specification into hardware design results in exceedingly large circuit area for a low-cost FPGA capacity. Therefore, in this paper we present a design which maximize the resource sharing and utilizing the modern FPGA features to reduce the area demand resulting in the successful implementation of the SEED plus interface logic with single low-cost FPGA. We achieved 66% area accupation by our SEED design for the XC2S100 (a Spartan-II series FPGA from Xilinx) and data throughput more than 66Mbps. This Performance is sufficient for the small scale embedded system while achieving tight area requirement.