• Title/Summary/Keyword: Embedded Testing

Search Result 415, Processing Time 0.022 seconds

A Study on Shear Bond Strength of Core-veneer Interface for Bilayered all Ceramics (Bilayered all Ceramics에서 Core와 Veneer 계면의 전단결합강도에 관한 연구)

  • Jung, Yong-Su;Lee, Jin-Han;Lee, Jae-In;Dong, Jin-Keun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.3
    • /
    • pp.231-242
    • /
    • 2008
  • Purpose: The purpose of this study was to investigate the bond strength of the core-veneer interface in all ceramic systems. Material and Methods: The all ceramic systems tested with their respective veneer were IPS Empress 2 with IPS Eris, IPS e.max Press with IPS e.max Ceram and IPS-e.max ZirCAD with IPS e.max Ceram. Cores (N=36, N=12/group, diameter: 10mm, thickness: 3mm) were fabricated according to the manufacturer's instruction and cleaned with ultrasonic cleaner. The veneer(diameter: 3mm, thickness: 2mm) were condensed in stainless steel mold and fired on to the core materials. After firing, they were again ultrasonically cleaned and embedded in acrylic resin. The specimens were stored in distilled water at $37^{\circ}C$ for 1 week. The specimens were placed in a mounting jig and subjected to shear force in a universal testing machine(Z020, Zwick, Germany). Load was applied at close to the core-veneer interface as possible with crosshead speed of 1.00mm/min until failure. Average shear bond strengths(MPa) were analyzed with a one-way analysis of variance and the Tukey test(${\alpha}=.05$). The failed specimens were examinated by scanning electron microscopy(JSM-6360, JEOL, Japan). The pattern of failure was classified as cohesive in core, cohesive in veneer, mixed or adhesive. Results: The mean shear bond strength($MPa{\pm}SD$) were IPS e.max Press $32.85{\pm}6.75MPa$, IPS Empress 2 $29.30{\pm}6.51MPa$, IPS e.max ZirCAD $28.10{\pm}4.28MPa$. IPS Empress 2, IPS e.max Press, IPS e.max ZirCAD were not significantly different from each others. Scanning electron microscopy examination revealed that adhesive failure did not occur in any all ceramic systems. IPS Empress 2 and IPS e.max Press exhibited cohesive failure in both the core and the veneer. IPS e.max ZirCAD exhibited cohesive failure in veneer and mixed failure.

Effect of universal primer on shear bond strength between resin cement and restorative materials (다용도 프라이머가 레진 시멘트와 수복재의 전단 결합 강도에 미치는 영향)

  • Kim, Na-Hong;Shim, June-Sung;Moon, Hong-Suk;Lee, Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.2
    • /
    • pp.112-118
    • /
    • 2012
  • Purpose: The purpose of this study was to evaluate the difference in shear bonding strength between resin cements to dental materials when a universal primer (Monobond plus) was applied in place of a conventional primer. Materials and methods: Four groups of testing materials: gold alloy (Argedent Euro, n = 16), non precious metal (T-4, n = 20), zirconia (Cercon, n = 20) and glass ceramic (IPS e.max press, n = 20), were fabricated into discs, which were embedded in an acrylic resin matrix. The gold alloy specimens were airborne-particle abraded, 8 of the specimens were coated with Metal primer II, while the remaining 8 specimens were coated with Monobond plus. The non precious and zirconia specimen were airborne-particle abraded then, the control group received Alloy primer coating, while the other was coated with Monobond plus. Glass ceramic specimens were etched. 10 specimens were coated with Monobond-S and the remaining specimens were coated using Monobond plus. On top of the surface, Multilink N was polymerized in a disc shape. All of the specimens were thermal cycled before the shear bonding strength was measured. Statistical analysis was done with Two sample $t$-test or Mann-Whitney U test (${\alpha}$=.05). Results: There were no significant differences in bonding strength depending on the type of primer used in the gold alloy and glass ceramic groups ($P$>.05), however, the bonding strengths of resin cements to non precious metal and zirconia groups, were significantly higher when the alloy primer was used ($P$<.05). Conclusion: Within the limitations of this study, improvement of universal primers which can be applied to all types of restorations is recommended to precious metals and zirconia ceramics. But, the bond strengths of non precious metals and zirconia ceramics were significantly lower when compared to a 10-MDP primer. More research is needed to apply universal primers to all types of restorations.

SHEAR BOND STRENGTH AND MICROLEAKAGE OF COMPOSITE RESIN ACCORDING TO TREATMENT METHODS OF CONTAMINATED SURFACE AFTER APPLYING A BONDING AGENT (접착제 도포후 오염된 표면의 처리방법에 따른 복합레진의 전단결합강도와 미세누출)

  • Park, Joo-Sik;Lee, Suck-Jong;Moon, Joo-Hoon;Cho, Young-Gon
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.4
    • /
    • pp.647-656
    • /
    • 1999
  • The purpose of this study was to investigate the shear bond strength and marginal microleakage of composite to enamel and dentin according to different treatment methods when the applied bonding agent was contaminated by artificial saliva. For the shear bond strength test, the buccal and occlusal surfaces of one hundred twenty molar teeth were ground to expose enamel(n=60) and dentin surfaces(n=60). The specimens were randomly assigned into control and 5 experimental groups with 10 samples in each group. In control group, a bonding system(Scotchbond$^{TM}$ Multi-Purpose plus) and a composite resin(Z-100$^{TM}$) was bonded on the specimens according to manufacture's directions. Experimental groups were subdivided into 5 groups. After polymerization of an adhesive, they were contaminated with at artificial saliva on enamel and dentin surfaces: Experimental group 1 ; artificial saliva was dried with compressed air. Experimental group 2 ; artificial saliva was rinsed with air-water spray and dried. Experimental group 3 ; artificial saliva was rinsed, dried and applied an adhesive. Experimental group 4 ; artificial saliva was rinsed, dried, and then etched using phosphoric acid followed by an adhesive. Experimental group 5, artificial saliva was rinsed, dried, and then etched with phosphoric acid followed by consecutive application of both a primer and an adhesive. Composite resin(Z-100$^{TM}$) was bonded on saliva-treated enamel and dentin surfaces. The shear bond strengths were measured by universal testing machine(AGS-1000 4D, Shimaduzu Co. Japan) with a crosshead speed of 5mm/minute under 50kg load cell. Failure modes of fracture sites were examined under stereomicroscope. The data were analyzed by one-way ANOVA and Tukey's test. For the marginal microleakage test, Class V cavities were prepared on the buccal surfaces of sixty molars. The specimens were divided into control and experimental groups. Cavities in experimental group were contaminated with artificial saliva and those surfaces in each experimental groups received the same treatments as for the shear test. Cavities were filled with Z-100. Specimens were immersed in 0.5% basic fuchsin dye for 24 hours and embedded in transparent acrylic resin and sectioned buccolingually with diamond wheel saw. Four sections were obtained from the one specimen. Marginal microleakages of enamel and dentin were scored under streomicroscope and averaged from four sections. The data were analyzed by Kruskal-Wallis test and Fisher's LSD. The results of this study were as follows. 1. The shear bond strength to enamel showed lower value in experimental group 1(13.20${\pm}$2.94MPa) and experimental group 2(13.20${\pm}$2.94MPa) than in control(20.03${\pm}$4.47MPa), experimental group 4(20.96${\pm}$4.25MPa) and experimental group 5(21.25${\pm}$4.48MPa) (p<0.05). 2. The shear bond strength to dentin showed lower value in experimental group 1(9.35${\pm}$4.11MPa) and experimental group 2(9.83${\pm}$4.11MPa) than in control group(17.86${\pm}$4.03MPa), experimental group 4(15.04${\pm}$3.22MPa) and experimental group 5(14.33${\pm}$3.00MPa) (p<0.05). 3. Both on enamel and dentin surfaces, experimental group 1 and 2 showed many adhesive failures, but control and experimental group 3, 4 and 5 showed mixed and cohesive failures. 4. Enamel marginal microleakage was the highest in experimental group 1 and there was a significant difference in comparison with other groups (p<0.05). 5. Dentin marginal microleakages of experimental group 1 and 2 were higher than those of other groups (p<0.05). This result suggests that treatment methods, re-etching with 35% phosphoric acid followed by re-application of adhesive or repeating all adhesive procedures, will produce good effect on both shear bond strength and microleakage of composite to enamel and dentin if the polymerized bonding agent was contaminated by saliva.

  • PDF

MARGINAL MICROLEAKAGE AND SHEAR BOND STRENGTH OF COMPOSITE RESIN ACCORDING TO TREATMENT METHODS OF ARTIFICIAL SALIVA-CONTAMINATED SURFACE AFTER PRIMING (접착강화제 도포후 인공타액에 오염된 표면의 처리방법에 따른 복합레진의 번연누출과 전단결합강도)

  • Cho, Young-Gon;Ko, Kee-Jong;Lee, Suk-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.1
    • /
    • pp.46-55
    • /
    • 2000
  • During bonding procedure of composite resin, the prepared cavity can be contaminated by saliva. In this study, marginal microleakage and shear bond strength of a composite resin to primed enamel and dentin treated with artificial saliva(Taliva$^{(R)}$) were evaluated. For the marginal microleakage test, Class V cavities were prepared in the buccal surfaces of fifty molars. The samples were randomly assigned into 5 groups with 10 samples in each group. Control group was applied with a bonding system (Scotchbond$^{TM}$ Multi-Purpose plus) according to manufacture's directions without saliva contamination. Experimental groups were divided into 4 groups and contaminated with artificial saliva for 30 seconds after priming: Experimental 1 group ; artificial saliva was dried with compressed air only, Experimental 2 group ; artificial saliva was rinsed and dried. Experimental 3 group ; cavities were etched with 35% phosphoric acid for 15 seconds after rinsing and drying artificial saliva. Experimental 4 group ; cavities were etched with 35% phosphoric acid for 15 seconds and primer was reapplied after rinsing and drying artificial saliva. All the cavities were applied a bonding agent and filled with a composite resin (Z-100$^{TM}$). Specimens were immersed in 0.5% basic fuschin dye for 24 hours and embedded in transparent acrylic resin and sectioned buccolingually with diamond wheel saw. Four sections were obtained from one specimen. Degree of marginal leakage was scored under stereomicroscope and their scores were averaged from four sections. The data were analyzed by Kruscal-Wallis test and Fisher's LSD. For the shear bond strength test, the buccal or occlusal surfaces of one hundred molar teeth were ground to expose enamel(n=50) or dentin(n=50) using diamond wheel saw and its surface was smoothed with Lapping and Polishing Machine(South Bay Technology Co., U.S.A.). Samples were divided into 5 groups. Treatment of saliva-contaminated enamel and dentin surfaces was same as the marginal microleakage test and composite resin was bonded via a gelatin capsule. All specimens were stored in distilled water for 48 hours. The shear bond strengths were measured by universal testing machine (AGS-1000 4D, Shimaduzu Co., Japan) with a crosshead speed of 5 mm/minute. Failure mode of fracture sites was examined under stereomicroscope. The data were analyzed by ANOVA and Tukey's studentized range test. The results of this study were as follows : 1. Enamel marginal microleakage showed no significant difference among groups. 2. Dentinal marginal microleakages of control, experimental 2 and 4 groups were lower than those of experimental 1 and 3 groups (p<0.05). 3. The shear bond strength to enamel was the highest value in control group (20.03${\pm}$4.47MPa) and the lowest value in experimental 1 group (13.28${\pm}$6.52MPa). There were significant differences between experimental 1 group and other groups (p<0.05). 4. The shear bond strength to dentin was higher in control group (17.87${\pm}$4.02MPa) and experimental 4 group (16.38${\pm}$3.23MPa) than in other groups, its value was low in experimental 1 group (3.95${\pm}$2.51 MPa) and experimental 2 group (6.72${\pm}$2.26MPa)(p<0.05). 5. Failure mode of fractured site on the enamel showed mostly adhesive failures in experimental 1 and 3 groups. 6. Failure mode of fractured site on the dentin did not show adhesive failures in control group, but showed mostly adhesive failure in experimental groups. As a summary of above results, if the primed tooth surface was contaminated with artificial saliva, primer should be reapplied after re-etching it.

  • PDF

Estimation of GARCH Models and Performance Analysis of Volatility Trading System using Support Vector Regression (Support Vector Regression을 이용한 GARCH 모형의 추정과 투자전략의 성과분석)

  • Kim, Sun Woong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.107-122
    • /
    • 2017
  • Volatility in the stock market returns is a measure of investment risk. It plays a central role in portfolio optimization, asset pricing and risk management as well as most theoretical financial models. Engle(1982) presented a pioneering paper on the stock market volatility that explains the time-variant characteristics embedded in the stock market return volatility. His model, Autoregressive Conditional Heteroscedasticity (ARCH), was generalized by Bollerslev(1986) as GARCH models. Empirical studies have shown that GARCH models describes well the fat-tailed return distributions and volatility clustering phenomenon appearing in stock prices. The parameters of the GARCH models are generally estimated by the maximum likelihood estimation (MLE) based on the standard normal density. But, since 1987 Black Monday, the stock market prices have become very complex and shown a lot of noisy terms. Recent studies start to apply artificial intelligent approach in estimating the GARCH parameters as a substitute for the MLE. The paper presents SVR-based GARCH process and compares with MLE-based GARCH process to estimate the parameters of GARCH models which are known to well forecast stock market volatility. Kernel functions used in SVR estimation process are linear, polynomial and radial. We analyzed the suggested models with KOSPI 200 Index. This index is constituted by 200 blue chip stocks listed in the Korea Exchange. We sampled KOSPI 200 daily closing values from 2010 to 2015. Sample observations are 1487 days. We used 1187 days to train the suggested GARCH models and the remaining 300 days were used as testing data. First, symmetric and asymmetric GARCH models are estimated by MLE. We forecasted KOSPI 200 Index return volatility and the statistical metric MSE shows better results for the asymmetric GARCH models such as E-GARCH or GJR-GARCH. This is consistent with the documented non-normal return distribution characteristics with fat-tail and leptokurtosis. Compared with MLE estimation process, SVR-based GARCH models outperform the MLE methodology in KOSPI 200 Index return volatility forecasting. Polynomial kernel function shows exceptionally lower forecasting accuracy. We suggested Intelligent Volatility Trading System (IVTS) that utilizes the forecasted volatility results. IVTS entry rules are as follows. If forecasted tomorrow volatility will increase then buy volatility today. If forecasted tomorrow volatility will decrease then sell volatility today. If forecasted volatility direction does not change we hold the existing buy or sell positions. IVTS is assumed to buy and sell historical volatility values. This is somewhat unreal because we cannot trade historical volatility values themselves. But our simulation results are meaningful since the Korea Exchange introduced volatility futures contract that traders can trade since November 2014. The trading systems with SVR-based GARCH models show higher returns than MLE-based GARCH in the testing period. And trading profitable percentages of MLE-based GARCH IVTS models range from 47.5% to 50.0%, trading profitable percentages of SVR-based GARCH IVTS models range from 51.8% to 59.7%. MLE-based symmetric S-GARCH shows +150.2% return and SVR-based symmetric S-GARCH shows +526.4% return. MLE-based asymmetric E-GARCH shows -72% return and SVR-based asymmetric E-GARCH shows +245.6% return. MLE-based asymmetric GJR-GARCH shows -98.7% return and SVR-based asymmetric GJR-GARCH shows +126.3% return. Linear kernel function shows higher trading returns than radial kernel function. Best performance of SVR-based IVTS is +526.4% and that of MLE-based IVTS is +150.2%. SVR-based GARCH IVTS shows higher trading frequency. This study has some limitations. Our models are solely based on SVR. Other artificial intelligence models are needed to search for better performance. We do not consider costs incurred in the trading process including brokerage commissions and slippage costs. IVTS trading performance is unreal since we use historical volatility values as trading objects. The exact forecasting of stock market volatility is essential in the real trading as well as asset pricing models. Further studies on other machine learning-based GARCH models can give better information for the stock market investors.