• Title/Summary/Keyword: Embedded Network System

Search Result 751, Processing Time 0.028 seconds

Optimized Network Pruning Method for Li-ion Batteries State-of-charge Estimation on Robot Embedded System (로봇 임베디드 시스템에서 리튬이온 배터리 잔량 추정을 위한 신경망 프루닝 최적화 기법)

  • Dong Hyun Park;Hee-deok Jang;Dong Eui Chang
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.1
    • /
    • pp.88-92
    • /
    • 2023
  • Lithium-ion batteries are actively used in various industrial sites such as field robots, drones, and electric vehicles due to their high energy efficiency, light weight, long life span, and low self-discharge rate. When using a lithium-ion battery in a field, it is important to accurately estimate the SoC (State of Charge) of batteries to prevent damage. In recent years, SoC estimation using data-based artificial neural networks has been in the spotlight, but it has been difficult to deploy in the embedded board environment at the actual site because the computation is heavy and complex. To solve this problem, neural network lightening technologies such as network pruning have recently attracted attention. When pruning a neural network, the performance varies depending on which layer and how much pruning is performed. In this paper, we introduce an optimized pruning technique by improving the existing pruning method, and perform a comparative experiment to analyze the results.

Real-time FCWS implementation using CPU-FPGA architecture (CPU-FPGA 구조를 이용한 실시간 FCWS 구현)

  • Han, Sungwoo;Jeong, Yongjin
    • Journal of IKEEE
    • /
    • v.21 no.4
    • /
    • pp.358-367
    • /
    • 2017
  • Advanced Driver Assistance Systems(ADAS), such as Front Collision Warning System (FCWS) are currently being developed. FCWS require high processing speed because it must operate in real time while driving. In addition, a low-power system is required to operate in an automobile embedded system. In this paper, FCWS is implemented in CPU-FPGA architecture in embedded system to enable real-time processing. The lane detection enabled the use of the Inverse Transform Perspective (IPM) and sliding window methods to operate at fast speed. To detect the vehicle, a Convolutional Neural Network (CNN) with high recognition rate and accelerated by parallel processing in FPGA is used. The proposed architecture was verified using Intel FPGA Cyclone V SoC(System on Chip) with ARM-Core A9 which operates in low power and on-board FPGA. The performance of FCWS in HD resolution is 44FPS, which is real time, and energy efficiency is about 3.33 times higher than that of high performance PC enviroment.

Low Resolution Infrared Image Deep Convolution Neural Network for Embedded System

  • Hong, Yong-hee;Jin, Sang-hun;Kim, Dae-hyeon;Jhee, Ho-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.6
    • /
    • pp.1-8
    • /
    • 2021
  • In this paper, we propose reinforced VGG style network structure for low performance embedded system to classify low resolution infrared image. The combination of reinforced VGG style network structure and global average pooling makes lower computational complexity and higher accuracy. The proposed method classify the synthesize image which have 9 class 3,723,328ea images made from OKTAL-SE tool. The reinforced VGG style network structure composed of 4 filters on input and 16 filters on output from max pooling layer shows about 34% lower computational complexity and about 2.4% higher accuracy then the first parameter minimized network structure made for embedded system composed of 8 filters on input and 8 filters on output from max pooling layer. Finally we get 96.1% accuracy model. Additionally we confirmed the about 31% lower inference lead time in ported C code.

SoC Virtual Platform with Secure Key Generation Module for Embedded Secure Devices

  • Seung-Ho Lim;Hyeok-Jin Lim;Seong-Cheon Park
    • Journal of Information Processing Systems
    • /
    • v.20 no.1
    • /
    • pp.116-130
    • /
    • 2024
  • In the Internet-of-Things (IoT) or blockchain-based network systems, secure keys may be stored in individual devices; thus, individual devices should protect data by performing secure operations on the data transmitted and received over networks. Typically, secure functions, such as a physical unclonable function (PUF) and fully homomorphic encryption (FHE), are useful for generating safe keys and distributing data in a network. However, to provide these functions in embedded devices for IoT or blockchain systems, proper inspection is required for designing and implementing embedded system-on-chip (SoC) modules through overhead and performance analysis. In this paper, a virtual platform (SoC VP) was developed that includes a secure key generation module with a PUF and FHE. The SoC VP platform was implemented using SystemC, which enables the execution and verification of various aspects of the secure key generation module at the electronic system level and analyzes the system-level execution time, memory footprint, and performance, such as randomness and uniqueness. We experimentally verified the secure key generation module, and estimated the execution of the PUF key and FHE encryption based on the unit time of each module.

Implementation of a security system using the MITM attack technique in reverse

  • Rim, Young Woo;Kwon, Jung Jang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.6
    • /
    • pp.9-17
    • /
    • 2021
  • In this paper, we propose a reversely using the "Man In The Middle Attack" attack technique as a way to introduce network security without changing the physical structure and configuration of the existing network, a Virtual Network Overlay is formed with only a single Ethernet Interface. Implementing In-line mode to protect the network from external attacks, we propose an integrated control method through a micro network security sensor and cloud service. As a result of the experiment, it was possible to implement a logical In-line mode by forming a Virtual Network Overlay with only a single Ethernet Interface, and to implement Network IDS/IPS, Anti-Virus, Network Access Control, Firewall, etc.,. It was possible to perform integrated monitor and control in the service. The proposed system in this paper is helpful for small and medium-sized enterprises that expect high-performance network security at low cost, and can provide a network security environment with safety and reliability in the field of IoT and embedded systems.

Development of an Indoor Networked Security Robot System (네트워크 기반 실내 감시 로봇 시스템 개발)

  • Park, Keun Young;Heo, Guen Sub;Lee, Sang Ryong;Lee, Choon Young
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.3
    • /
    • pp.136-142
    • /
    • 2008
  • Mobile robots can offer services like intelligent monitoring in an indoor environment using network connection with remote users. In this paper, we designed and developed a networked security robot system with various sensors, such as flame detector, gas detector, sound monitoring module, and temperature sensor, etc. The robot can be accessed through a web service and the user can check the status of the environment. Using ADAMS software, we defined the motor specification for a worst-case condition of climbing over a obstacle. We applied the robot system in monitoring office condition.

  • PDF

A Weather Monitoring System for Local Area Using an Energy-balanced Hybrid WSN Protocol (에너지 균등 하이브리드 WSN 프로토콜 기반 국지 기상 관측 시스템)

  • Lee, Hyung-Bong;Chung, Tae-Yun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.4
    • /
    • pp.193-203
    • /
    • 2014
  • This paper implements a weather monitoring system based on wireless sensor network. The wireless sensor network protocol proposed in this paper adopts a TDMA styled MAC. The protocol is designed to balance the energy consumption among sensor nodes. Other purposes of the protocol are to avoid the hidden terminal problem in 2-hop star topology, and to allow a CSMA styled communication in a given time slot to support emergent messages. Also, this paper develops the hardware of sensor node, gateway and electric generator based on solar and windy energy. The test results on the implemented system show that the time slot of each node is shifted in circular manner to balance the waiting time for transmission, and the reliability of wireless communication is over 99%.

Intelligent Force Control Ap plication of an Autonomous Helicopter System (자율 주행 헬리콥터 시스템의 지능 힘제어 응용)

  • Eom, Il Yong;Jung, Seul
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.5
    • /
    • pp.303-309
    • /
    • 2011
  • In this paper, an intelligent force control technique is applied to an autonomous helicopter. Although most research on the autonomous helicopter system is about navigation and control, force control of an autonomous helicopter system is quite new and not presented yet. After controlling the position of the helicopter by the LQR method, force control is applied. The adaptive impedance force control algorithm is introduced and tested to regulate the desired force under unknown location and stiffness of the environment. To compensate for uncertainty from outer disturbance, a neural network is added to form an intelligent force control framework. Simulation studies show that the proposed force control algorithm works well.

Study about the home network system implementation that used an ubiquitous sensor network (유비쿼터스 센서 네트워크을 이용한 홈네트워크 시스템 구현에 관한 연구)

  • Nam, Sang-Yep;Park, Chun-Myoung
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.479-480
    • /
    • 2007
  • It is study about implementation of the home network system that used an ubiquitous sensor network and an embedded system in this paper. PXA270 and CC2420 were used, and the home server of a wireless sensor home network system composed it. A wireless control system is composed of a gas valve, a DC motor, a lamp and a door rock. A wireless detection system is composed of a gas detection sensor, a movement detection sensor, an extension detection sensor The wireless detection system that was an environment sensing system was composed of temperature, humidity, mic, illuminance, a speed-up, infrared rays temperature sensing module, and modular, other RFID established an USB camera, and an ubiquitous home network was composed.

  • PDF

An Extensible Smart Home IoT System Based on Low-power Networks (저전력 네트워크 기반의 확장 용이한 스마트 홈 IoT 시스템)

  • Lee, Jun-young;Yoo, Seong-eun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.3
    • /
    • pp.133-141
    • /
    • 2018
  • There are increasing interests on smart home systems. However, most of the existing works focus on the functionality itself. In this paper, we propose an extensible smart home system based on low power networking such as CoAP, 6LoWPAN, and Zigbee. The proposed home IoT system consists of Home APP, Home Server, Home Broker, and Power Devices. Each component of the system is connected by the low-power network technologies aforementioned. As the end device, Power Device senses the current consumption of the attached appliance and controls the power to it. Power Device reports the sensing data to Home Server via Home Broker. The Home Broker enhances the scalability of the system. Home Broker extends the service area and the user's services, and it manages the connection of the underlying devices and processes, and transmits data to Home Server from Power Devices. Through the experimental evaluation, we show that the proposed system achieves the design goals such as extensibility and low power networking.