• Title/Summary/Keyword: Embedded Hardware

Search Result 683, Processing Time 0.037 seconds

Automatic Hardware/Software Interface Generation for Embedded System

  • Son, Choon-Ho;Yun, Jeong-Han;Kang, Hyun-Goo;Han, Tai-Sook
    • Journal of Information Processing Systems
    • /
    • v.2 no.3 s.4
    • /
    • pp.137-142
    • /
    • 2006
  • A large portion of the embedded system development process involves the integration of hardware and software. Unfortunately, communication across the hardware/software boundary is tedious and error-prone to create. This paper presents an automatic hardware/software interface generation system. As the front-end of hardware/software co-design frameworks, a system designer defines XML specifications for hardware functions. Our system generates hardware/software interfaces including Device Driver, Driver API, and Device Controller from these specifications. Embedded software designers can easily use hardware just like system libraries. Our system reduces the mistakes and errors that can be occurred when a software programmer directly connects software to hardware, and supports balancing labors between hardware developers and software programmers. Moreover, this system can be used as the back-end for a hardware/software co-design framework.

Virtual ARM Machine for Embedded System Development (임베디드 시스템의 가상 ARM 머신의 개발)

  • Lee, So-Jin;An, Young-Ho;Han, Alex H;Hwang, Young-Si;Chung, Ki-Seok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.1
    • /
    • pp.19-24
    • /
    • 2008
  • To reduce time-to-market, more and more embedded system developers and system-on-chip designers rely on microprocessor-based design methodology. ARM processor has been a major player in this industry over the last 10 years. However, there are many restrictions on developing embedded software using ARM processor in the early design stage. For those who are not familiar with embedded software development environment or who cannot afford to have an expensive embedded hardware equipment, testing their software on a real ARM hardware platform is a challenging job. To overcome such a problem, we have designed VMA (Virtual ARM Machine), which offers easier testing and debugging environment to ARM based embedded system developers. Major benefits that can be achieved by utilizing a virtual ARM platform are (1) reducing development cost, (2) lowering the entrance barrier for embedded system novices, and (3) making it easier to test and debug embedded software designs. Unlike many other purely software-oriented ARM simulators which are independent of real hardware platforms, VMA is specifically targeted on SYS-Lab 5000 ARM hardware platform, (designed by Libertron, Inc.), which means that VMA imitates behaviors of embedded software as if the software is running on the target embedded hardware as closely as possible. This paper will describe how VMA is designed and how VMA can be used to reduce design time and cost.

  • PDF

Hardware-Aware Rate Monotonic Scheduling Algorithm for Embedded Multimedia Systems

  • Park, Jae-Beom;Yoo, Joon-Hyuk
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.657-664
    • /
    • 2010
  • Many embedded multimedia systems employ special hardware blocks to co-process with the main processor. Even though an efficient handling of such hardware blocks is critical on the overall performance of real-time multimedia systems, traditional real-time scheduling techniques cannot afford to guarantee a high quality of multimedia playbacks with neither delay nor jerking. This paper presents a hardware-aware rate monotonic scheduling (HA-RMS) algorithm to manage hardware tasks efficiently and handle special hardware blocks in the embedded multimedia system. The HA-RMS prioritizes the hardware tasks over software tasks not only to increase the hardware utilization of the system but also to reduce the output jitter of multimedia applications, which results in reducing the overall response time.

A Development of Personalized Embedded System for Interactive Training Machines (체감형 운동 기기를 위한 개인화된 임베디드 시스템의 개발)

  • Byun, Siwoo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.6
    • /
    • pp.361-367
    • /
    • 2011
  • In this paper, we propose an interactive embedded system framework for efficient training management in u-health environment. First, we analyzed various requirements of smart training systems for quality of life. We also analyzed the oversea trends and positive effects of the embedded system in terms of both technical and economical factors. Second, we proposed detailed design specification for embedded hardware implementation. Third, we developed effective OS(Operating System) specification for the embedded hardware. Finally, we developed a training scenario and embedded applications such as training control software and analysis software for the smart training systems.

Embedded One Chip Computer Design for Hardware Implementation of Genetic Algorithm (유전자 알고리즘 하드웨어 구현을 위한 전용 원칩 컴퓨터의 설계)

  • 박세현;이언학
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.1
    • /
    • pp.82-90
    • /
    • 2001
  • Genetic Algorithm(GA) has known as a method of solving NP problem in various applications. Since a major drawback of the GA is that it needs a long computation time, the hardware implementation of Genetic Algorithm is focused on in recent studies. This paper proposes a new type of embedded one chip computer fort Hardware Implementation of Genetic Algorithm. The proposed embedded one chip computer consists of 16 Bit CPU care and hardware of genetic algorithm. In contrast to conventional hardware oriented GA which is dependent on main computer in the process of GA, the proposed embedded one chip computer is independent on main computer. Conventional hardware GA uses the fixed length of chromosome but the proposed embedded one chip computer uses the variable length of chromosome by employing the efficient 16 bit Pipeline Unit. Experimental results show that the proposed one chip computer is applicable to the design of evolvable hardware for Random NRZ bit synchronization circuit.

  • PDF

Hardware Implementation of Genetic Algorithm for Evolvable Hardware (진화하드웨어 구현을 위한 유전알고리즘 설계)

  • Dong, Sung-Soo;Lee, Chong-Ho
    • 전자공학회논문지 IE
    • /
    • v.45 no.4
    • /
    • pp.27-32
    • /
    • 2008
  • This paper presents the implementation of simple genetic algorithm using hardware description language for evolvable hardware embedded system. Evolvable hardware refers to hardware that can change its architecture and behavior dynamically and autonomously by interacting with its environment. So, it is especially suited to applications where no hardware specifications can be given in advance. Evolvable hardware is based on the idea of combining reconfigurable hardware device with evolutionary computation, such as genetic algorithm. Because of parallel, no function call overhead and pipelining, a hardware genetic algorithm give speedup over a software genetic algorithm. This paper suggests the hardware genetic algorithm for evolvable embedded system chip. That includes simulation results for several fitness functions.

A Study on Next Generation IT Fields Application of Embedded Systems (임베디드시스템의 차세대 IT 분야 응용에 관한 연구)

  • Park, Chun-Myoung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.840-841
    • /
    • 2012
  • This paper represent a method of next generation IT fields of embedded systems. we discuss the background why the embedded systems is the importance in the next generation IT fields. Also, we describe the hardware oriented embedded systems, the embedded hardware processor, specified processor. And we discuss the embedded system application fields, i.e. mobile phone application, STB application, telematics fields, home automation, personal digital assistant and so on.

  • PDF

An Embedded Systems based on HW/SW Co-Design (HW/SW 협동설계에 기반을 둔 임베디드시스템)

  • Park, Chun-Myoung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.641-642
    • /
    • 2011
  • This paper presents method of constructing the embedded systems based on hardware-software codesign which is the important fields of $21^{st}$ information technology. First, we describe the classification and necessity of embedded systems, and we discuss the consideration and classification for constructing the embedded systems. Also, we discuss the embedded systems modeling. The proposed embedded systems based on hardware-software co-design is important gradually, we expect that it involve the many IT fields in the future.

  • PDF

HW-SW Embedded System (HW-SW 임베디드 시스템)

  • Park, Chun-Myoung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.880-881
    • /
    • 2013
  • This paper present a method of constructing embedded system based on the hardware and software which is a center of 21th information technology. For the purpose of that, we discuss the embedded system classification and necessity also the main points which is the key when we constructing the embedded system. We discuss the embedded system modelling. The proposed hardware and software embedded system be able to contribute future advanced information technology upcoming.

  • PDF

Test Data Selection Technique to Detect Interaction Faults in Embedded System (내장형 시스템의 상호작용 오류 감지를 위한 테스트 데이타 선정 기법)

  • 성아영;최병주
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.12
    • /
    • pp.1149-1157
    • /
    • 2003
  • As an Embedded system combining hardware and software gets more complicated, the importance of the embedded software test increases. Especially, it is mandatory to test the embedded software in the system which has high safety level. In embedded system, it is necessary to develop a test technique to detect faults in interaction between hardware and software. In this paper, we propose a test data selection technique using a fault injection technique for the faults in interaction between hardware and software in embedded system and we apply our technique to the Digital Plant Protection System and analyze effectiveness of the proposed technique through experiments.