International Journal of Information Processing Systems, Vol.2, No.3, December 2006 137

Automatic Hardware/Software Interface
Generation for Embedded System

Choonho Son*, Jeong-Han Yun**, Hyun-Goo Kang**, and Taisook Han**

Abstract - A large portion of the embedded system development process involves the integration of
hardware and software. Unfortunately, communication across the hardware/software boundary is
tedious and error-prone to create. This paper presents an automatic hardware/software interface
generation system. As the front-end of hardware/software co-design frameworks, a system designer
defines XML specifications for hardware functions. Our system generates hardware/software interfaces
including Device Driver, Driver API, and Device Controller from these specifications. Embedded
software designers can easily use hardware just like system libraries. Our system reduces the mistakes
and errors that can be occurred when a software programmer directly connects software to hardware,
and supports balancing labors between hardware developers and software programmers. Moreover, this
system can be used as the back-end for a hardware/software co-design framework.

Keywords: Embedded System, Hardware Controller, Device Driver, Code Generation, Co-design

1. Introduction

Every embedded system is a compact composition of
hardware and software. A large portion of the embedded
system development process involves the integration of
hardware and software. Unfortunately, communication
across the hardware/software boundary is tedious and
error-prone to create. During the embedded system
development process, most of the errors arise from the
integration of hardware and software [1].

We propose an automatic hardware/software interface
generation system for embedded systems. Embedded
system designers define the specification files which are
the description of the hardware functions. Each hardware
component has three XML specification files — AP, Driver,
and Controller.

The function of the hardware can be described with
automata. We introduce Hardware Interface Automata
which is extended from the Labeled Transition System [10].
Hardware Interface Automata describes hardware usage for
software programmers.

Our system generates specific hardware/software
interface routines automatically: Driver API, Device Driver,
and Device Controller. Therefore, embedded software
programmers can easily use hardware just like pre-existing
C libraries. Low level mechanism of communication is

Manuscript received September 30, 2005; accepted November 23, 2006.
This research was supported by the MIC(Ministry of Information and
Communication), Korea, under the ITRC(Information Technology
Research Center) support program supervised by the IITA(Institute of
Information Technology Assessment) (IITTA-2005-C1090-0502-0031)
Corresponding Author: Choonho Son
* Network Technology Laboratory, Korea Telecom (choonho@kt.co.kr)
** Dept. of Computer Science, Korea Advanced Institute of Science and
Technology (dolgam@pllab .kaist.ac.kr, hgkang@ropas.kaist.ac.kr,
han@cs kaist.ac.kr)

invisible to the software programmers. That is, embedded
software programmers do not need to know the low level
characteristics of hardware such as memory mapped I/O or
kernel functions.

Automatic hardware/software interface generation
reduces the mistakes and errors that can be occurred when
software programmers must directly connect software to
hardware. Consequently our system makes the embedded
system development process faster and safer. In addition,
this system can be used as the back-end for hardware/
software co-design framework. The coverage of this
system is a Linux machine with Intel XScale CPU, and the
additional hardware is attached in the Variable Latency I/O
control area.

This paper is organized as follows. Section 2 describes
other hardware interface generation systems. Section 3
describes our interface modeling, how to derive the
Interface Specification, and code generations. Section 4
shows the implementation. The case study is given in
Section 5. The conclusion and future works are presented
in Section 6.

2. Related Work

Unlike other hardware/software co-design systems
which focused on system specification, verification,
simulation, and mapping on the target architecture, our
system focuses on interface generation from the
hardware/software co-design methodologies.

COSMOS [2], COSYMA [3], and CoWare [4] use
concurrently-running processes using remote procedure
calls (RPC) for communications. This communicating
mechanism is more complicated than shared memory and
raises efficiency issues.

Copyright © 2006 KIPS (ISSN 1738-8899)

138 Automatic Hardware/Software Interface Generation for Embedded System

Interface generation in PISH [5] introduced a layered
interface model like service, message, driver, and register
transfer level. Despite the well-defined layered approach,
this system is not a fully automatic interface generator: the
designer has to manually build all libraries of low-level
interface elements.

Approaches to automatic interface generation include
the CHINOOK [6] approach, as well as domain-specific
approaches like in the POLIS environment [7]. As in
POLIS, control-dominated systems are described by a set
of co-design finite state machines (CFSMs).

SHIM (8] has the most similar features with our system.

SHIM uses bus-based communication with shared memory.

Communication by shared memory is much simpler than
by remote procedure call (RPC) or FIFO-based one. The
main purpose of SHIM is integrating software and
hardware using single specification language. Interface
generation is the second part. The communication media -
shared memory - does not have any information about
hardware. It is just a communication channel between
software and hardware in SHIM. Our system has the
abstract information about hardware which indicates what
functions it has.

3. Hardware/Software Interface
3.1 Co-design Framework

Most co-design projects have their own high-level
description language. For example, POLIS [7] accepts
Esterel [9] language which is translated into CFSM for
each specified module or POLIS Software Hardware
Interface Format (SHIFT) for hardware/software interface
modules. This makes it hard to introduce pre-existing
modules which are implemented by C/C++ or Verilog
language.

Rather than proposing a new syntax for the
hardware/software interface description such as SHIFT, we
choose the simple DTD-less XML format which only
includes method names, input/output signals, and
additional information because the purpose of our system
is to hide the low level mechanism of hardware/software
communication and to offer the C programming style to the
programmer. The grammar of the Interface Specification is
accessible at our web page [12].

Fig. 1 shows the hardware/software co-design
framework of our system. An embedded system designer or
front-end of the co-design framework has only to make
three Interface Specification — API, Driver, and Controller
- files from the high-level hardware specifications or
hardware manual. The API specification is equivalent to
the Hardware Interface Automata which describes how to
use hardware. The Driver specification describes basic
communication methods between software and hardware.
The Driver API uses Device Driver to communicate with
the hardware. The Controller specification describes how
many inputs or outputs exist in the hardware. The

Architecture Information has many clues about the overall
system such as the type of CPU, operating system, and
system bus architecture.

EFSM EFSM |
Push-Pull
(Software) | " Ytertace [Cexdwaze) |
. S 3
- . -

. 1

Logical Layer

manual

Architecture

B it i
Information automatic

o ¥ i
Specification Layer Hardware Interface Generator (HINGE)]

Driver API Device Driver Device Controller
Software f Hardware
©) <: ©) © (Verilog) F (Verilog)

Implementation Layer

Fig. 1. Co-design Framework

Our system gathers this information and generates the
Driver API, Device Driver, and Device Controller code.

3.2 Architecture of an embedded system

The embedded system is quite ambiguous to define. We
assume the embedded system has an operating system and
application specific hardware which is directly connected
to the system bus. Fig. 2 is our model of an embedded
system with FPGA.

Address
Control

F—»
Wilte

Fnable

FPGA ¥
(P core) §

Fig. 2. Model of embedded system with FPGA

The hardware is embedded in the FPGA which has
additional controller logic, including address decoder and
data decoder.

There are two big modules for code generation —
softwarec generation and hardware generation. The
difference between them is that hardware generation is not
related with software types such as the operating system.
However, software generation is tightly related with
architecture information, for example, the type of CPU and
operating system.

The software part of the interface has the following
structure. The device driver logic is dependent on the
operating system. We currently support Linux (Fig. 3).

Choonho Son, Jeong-Han Yun, Hyun-Goo Kang, and Taisook Han 139

Device
API

insmod :

Kernel AP!

struct file_operations

Device Driver

- xxx_init(...)

IXxx_interrupt{...)

xxx_open(...)
xxx_read(...)
xxx_write(...)

| open : xxx_open, | 1—_
read ; xxx_read,
m-_\—»write:xxx_write, 1 xxx_liseek(...) |
liseek(... llseek : xxx_Iseek, — t xxx_release(...)]
() _J—<> release : xxx_release———’_L =
close(...) } ¥

xxx_exit(...

Fig. 3. Software structure of the interface

To specify the software part of the interface, we have
two rules. In Fig. 4, device API indicates how to call the
kernel function. In Fig. 5, DRIVER decides how to transfer
the data between API and kernel.

API = DEVICE AUTOMATA
DEVICE := FUNC*
¢ FUNC 1= NAME PARAM*
| NAME PARAM®* RETURN
PARAM 1= TYPE NAME SIZE OF
RETURN = TYPE NAME SIZE OF
NAME = Identifier
TYPE = bool | uint8 | wint16 | char | char + |uint8» | uint16+
SIZE = Positivelnteger
OP = push|pull
AUTOMATA == STATENUMBER*
STATENUMBER 1= CURRENT_STATE RELATION*
RELATION 1= NAME ACTION®
ACTION = COND NEXT.STATE
COND 1= EXPR|aluways
EXPR u= NAME OP Number
OP 1= < | > | <=]>=|l=]==
CURRENT_STATE := PositiveInteger
NEXT.STATE = Pasilivelnteg;cr

Fig. 4. API specification grammar

DRIVER 1= EVENT EVENTLAYOUT

EVENT o= NAME SW2HW=* HW2SW» CTL
| NAME SW2HW* HW2SW”
SW2HW 1= SW_VARIABLE HW_FPORT
HW2SW .= SWVARIABLE HW_PORT
CTL = interrupt | polling PIN NUMBER HW _PORT
SW_VARIABLE u= TYPENAME
NAME 5= Identifier
TYPE = bool | wint8 | uint16 | char | char+ | wint8+ Juintlb+
HW_PORT = NAME|NAMEWIDTH
WIDTH = [Pesitivelnteger: PositiveInteger]
PINNUMBER = Positivelnteger
EVENT.LAYOUT 1= NAME VirtualAddress BUS_S1ZE OFFSET_COUNT OFFSET*
BUS_SIZE 16 | 32
OFFSET_COUNT 1= PaositiveInteger

OFFSET u= COUNT NAME BITMAP to HW NAME
| COUNT NAME BITMAP from HW NAME

Fig. 5. Driver specification grammar

The Device Driver is highly target-machine dependent.
We generate the module-based device driver in the Linux
kernel 2.4. We support char devices, and blocking or non-
blocking I/O’s. There is a well-defined API for the device
driver programming. The core APIs are open, close, read,
write and seek. The Driver API is a collection of functions
which constitute a set of core APIs.

The hardware embedded in the FPGA is divided into
three types from the viewpoint of software: 1) wrife
module, 2) read module, and 3) read/write module

The write module and read module have uni-directional
communication channels between software and hardware.
The software writes data into the hardware, and the
hardware does not send any data into the software in the
write module. These read and write modules of the
embedded system are depicted in the controller block
diagrams of Fig. 6 and Fig. 7.

we_select[n-1:0]

Address
Decoder

Address
BUS

v

Hardware
module

Data
Decoder

CLK

& External to FPGA Internal to FPGA >

Fig. 6. Block diagram of write model

1
¢ re_select[m-1:0
Address R derf‘ss‘ X [)
BUS > ccoder

Hardware
module

Datd
Decoder

£ .41

€ External to FPGA | Internal to FPGA 2>

Fig. 7. Block diagram of read model

The read/write module, which has a bidirectional
communication channel, is a union of read module and
write module. The arbitration for reading or writing is
decided by Address Decoder (Fig. 8).

Our system generates Address Decoder, Data Decoder,
Demux, Mux, and top module in synthesizable Verilog code.
The top module is the union of Address Decoder, Data
Decoder, Demux, and Mux, as in the block diagram of Fig.

140 Automatic Hardware/Software Interface Generation for Embedded System

8. The Controller specification concerns how many inputs
and outputs for the hardware module exist. If there are only
inputs, the generated code is write module, which does not
have Mux logic.

Address R i;\ddrzss
RUS > ecoder
—
—p
.
+/ * |Hardware
Dat & ™P Module
ata
ecoder [
2" 1] [f—
= \ux :
L]
-
f

€ External to FPGA | Internal to FPGA 2>

Fig. 8. Block diagram of read/write model

Our interface generation system has a read/write-
generator module for one byte and two bytes. This size of
data decoder depends on the system bus size. If the data
size for reading or writing is larger than the system bus size,
the software generator generates several read/write
methods for the appropriate addresses. All data can be
represented by one/two-byte read or write methods.

The reading methods are more complicate than the write
method, because we have a selection problem for the data
validity of hardware: the first concerns reading data
without checking data validity; the other concerns reading
data when software convinces itself of data validity. This
can be implemented by polling or interrupt. We support all
three methods. For simplicity, the interrupt line is directly
connected with CPU, which means the interrupt line does
not share with other hardware and does not use
Programmable Interrupt Controller (PIC).

4. Implementation

The reconfigurable hardware (FPGA) is attached to the
system bus. Intel designed the XScale micro processor for
embedded systems, and the customized hardware can be
connected on a variable latency I/O control. It con-
sequently makes the communication style asynchronous,
memory-mapped [/O and non-buffered. Fig. 9 shows our
embedded board. There are two parts, main board (HBE-
EMPOS 1II) and expansion kit (HBE — EMP2CYC) [11].

The code generator is implemented by the Python
language. The specification is DTDless XML, which is
parsed by the python DOM library. The source codes are
divided into five parts. The total size of our system is
depicted in Fig. 10.

HBE-EMPOS I

PN

- {HBE - EMP2CYC]

Fig. 9. Embedded board and expansion kit

API|Driver| Controller | make file | Main frame work |Total

of line(Python) |363| 1169 988 44 81 2645

Fig. 10. Size of code generator

5. Case Study

We design a car controller as an example of the
hardware/software co-design. A car dashboard consists of
speedometer, counter, oil-gauge and some other signals.
This controller has an additional safety feature that
monitors the status of the door (whether it is closed or
open) and sends out a warning signal when the door is
open while the car is in motion. Moreover, while the car
starts, the controller ensures that the doors are closed. The
state diagram of the controller is illustrated in Fig. 11.

@ engine = -
get_engine()+reidy, -
init -
- -
@ 3 i
—y
N — ~ !
~ A~
exit - — -~
@ oil = get_oil()
software

Fig. 11. Logical concept: car controller

From Fig. 11, the designer can make the specification
file in XML. The size of the specifications is summarized
in Fig. 12.

API Driver Controller Total
of line(engine) 14 11 10 35
of line(oil) 14 10 9 33
Total # of lines 28 21 19 68

Fig. 12. The number of lines: XML

Choonho Son, Jeong-Han Yun, Hyun-Goo Kang, and Taisook Han 141

The generated file size from the car controller
specification of Fig. 12 is illustrated in Fig. 13.

API(C) Driver(C) |Controller(Verilog HDL)| Makefile Total

of line(engine) 36 123 75 15 249
of line(oil) 36 95 74 15 220
Total # of lines 72 218 149 30 469

Fig. 13. Size of generated codes

The real prototype which is embedded in our board is
shown in Fig. 14. The left LCD window shows car
controller GUI. The right part is the expansion KIT (HBE —
EMP2CYC). Pushing the dip switch, the speedometer is
immediately updated, because the software (GUI) and the
hardware (dip switch) are connected by our interface
generated codes. The Verilog code is compiled by Quartus
11

1. dip switch

¥ "
?’}

Fig. 14. Prototype of car controller

6. Conclusion and future work

This paper presents the automatic interface generation
system using the Inferface Specification. Embedded
software designers can use hardware resources through
customized library calls in the same way as C libraries.
Many hardware/software co-design frameworks propose
hardware dependent interface models or only provide low-
level communications such as send or receive. In our paper,
we propose a general model of the embedded system which
has FPGA for hardware.

There are a few things which can be automated. One of
the tedious aspects of hardware synthesis is assigning
every hardware input/output port a specific hardware pin
number. According to each EDA tool, including Quartus,
the method for specifying pin numbers is slightly different.
We can automate this method by specifying the names of
the EDA tools. We do not currently manage the entire
physical memory space, so the designer has to specify the
physical or virtual address of the specific hardware. This

work can be automated, if the hardware/software co-design
framework manages the entire resources of the embedded
system.

In this paper, we do not mention optimization, because
our purpose is to generate an automatic interface for rapid
prototyping. If our system is used for the final product, we
have to optimize the memory layout of the communication
events and the soundness of the generated codes.

We think that one interface generator cannot support all
of the embedded system architectures because of the
extraordinary characteristics of all the architectures. If the
embedded board vendors service their own interface
generators, then embedded system development will
become dramatically easier.

Our ultimate goal is an embedded system development
environment for developers. Future works are as follows. A
sequence of Hardware Interface Automata from the start
state is the right method of using hardware. We do not
currently check for the illegal usage of hardware. We
believe that the Driver API can detect the illegal path by
keeping the state of the Hardware Interface Automata on
run-time; the return value of Driver API can be used to
check for the misuse of hardware functions.

References

[1] Choonho Son, Jeong-Han Yun, Hyun-Goo Kang, and
Taisook Han, “Hardware/Software Interface
Generation for Embedded System using Hardware
Interface Automata,” Proceedings of the 4th
International Conference on Asian Language
Processing and Information Technology, Bangkok,
Thailand, 2005.

[2] Ismail, T. B., Abid and A. Jerraya, "COSMOS: A
codesign approach for communicating systems,”
Proceedings of the 3™ International Workshop on
Hardware/sofiware Co-Design, Grenoble, France,
1994, pp. 17-24.

[3] Emst, R., Henkel, T. Benner, W. Ye, U. Holtmann, D.
Herrmann and M. Trawny, “The COSYMA
environment for hardware/software cosynthesis of
small embedded systems,” Microprocessors and
Microsystems 20, 1996, pp. 159-166.

[4] Bolsens, L., H. J. De Man, B. Lin, K. Van Rompaey, S.
Vercauteren and D. Verkest, “Hardware/software co-
design of digital telecommunication systems,”
Proceedings of the IEEE 85,1997, pp. 391-418."

[5] Cristiano C. de Araujo, and Edna Barros, “Interface
Generation for Concurrent Processes during
Hardware/Software Co-synthesis,” Proceedings of the
15th Symposium on Integrated Circuits and Systems
Design, 2002.

[6] P. Chou, R. Ortega, and G. Borriello, “Interface co-
synthesis techniques for embedded systems,”

" Proceedings of the IEEE/ACM International
Conference on CAD (ICCAD), 1995, pp 280-287.
[7] F. Balarin, A. Jurecska, and H. Hsich et al,

142

(8]

[10]

[11]

(12]

Automatic Hardware/Software Interface Generation for Embedded System

“Hardware-Software
System: the Polis Approach”,
Press, Boston, 1997.

Stephen A. Edwards, “SHIM: A language for
Hardware/Software Integration,” Synchronous
Languages, Applications, and Programming (SLAP),
2005.

Berry, G. and G. Gonthier, “The Esterel synchronous
programming language: Design, semantics,
implementation,” Science of Computer Programming
19, pp. 87-152.

Sagar Chaki, Edmund Clarke, Alex Groce, Somesh
Jah, and Helmut Veith, “Modular Verification of
Software Components in C,” Transactions on
Software Engineering (TSE), Vol. 30(6), pp 388~402,
June 2004.

Hanback electronics homepage,
http://www.hanback.co.kr

Interface Description Language grammar,
http://pllab.kaist.ac.kr/~chson/HIL/grammar.html

Co-Design of Embedded
Kluwer Academic

Choonho Son

He received his BS degree in Computer
Science from Yonsei Univ. in 2003 and
an MS degree in Computer Science
from KAIST in 2005. He is now
working with the Technology Labo-
ratory, Korea Telecom. His research
interests include embedded systems,
co-design, and programming language.

B

Jeong-Han Yun

He received BS and MS degrees in
Computer Science from KAIST in
2001 and 2003, respectively. He is
currently undertaking a doctorate course
as a member of the programming
language lab at KAIST. His research
interests include embedded systems,

O~ de31gn programming language, and program analysis.

Hyun-Goo Kang

He received BS and MS degrees in
Computer Science from Hanyang
Univ. in 1997 and 1999, respectively.
During 1999~2000, he stayed with
ETRI. He is now undertaking a
doctorate course as a member of the
programming language lab at KAIST.
His research interests include

embedded systems and program analysis.

program analysis.

Taisook Han

He received a Ph.D. degree in
Computer Science from the Univ. of
North Carolina at Chapel Hill in 1990.
He has been a professor at KAIST
since 1991. His research interests are in
the areas of programming language,
compilers, embedded systems, and

