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Many embedded multimedia systems employ special 
hardware blocks to co-process with the main processor. 
Even though an efficient handling of such hardware 
blocks is critical on the overall performance of real-time 
multimedia systems, traditional real-time scheduling 
techniques cannot afford to guarantee a high quality of 
multimedia playbacks with neither delay nor jerking. This 
paper presents a hardware-aware rate monotonic 
scheduling (HA-RMS) algorithm to manage hardware 
tasks efficiently and handle special hardware blocks in the 
embedded multimedia system. The HA-RMS prioritizes 
the hardware tasks over software tasks not only to 
increase the hardware utilization of the system but also to 
reduce the output jitter of multimedia applications, which 
results in reducing the overall response time. 
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I. Introduction 

An embedded multimedia system must guarantee the 
specific rate and timing requirements to deliver or stream 
continuous media data such as audio and video [1], [2]. In 
general, multimedia systems have the following 
characteristics [3]-[7]. First, a typical requirement of 
continuous media is that data must be delivered to a client by 
a certain deadline because data arriving after the presentation 
time is unusable. Multimedia systems thus require hard real-
time scheduling to ensure that a critical task should be 
serviced within a guaranteed period of time. Second, 
multimedia applications are sensitive to timing delays during 
playback. Once a continuous media file is delivered to a 
client, delivery must continue at a certain rate during 
playback of the media. When missing the deadline due to the 
output jitter, the quality of multimedia applications severely 
degrades and the listener or viewer will be subjected to long 
pauses or lost frames of video during the presentation due to 
the jitter. Thus, minimizing these timing delays provides a 
certain quality of service (QoS) guarantee. 

Multimedia data generally requires huge computational 
power because compression, decoding, and rendering may 
require significant CPU processing [4], [6]-[8]. Most of 
embedded multimedia systems are currently employing special 
hardware blocks to co-process with the main processor to 
support multimedia applications of high quality and 
compensate for its demanding computational power [8]. For 
example, Qualcomm’s MSM chipsets equip two DSPs inside 
their chipsets to support multimedia applications, and TI’s 
OMAP chipsets also embed one or more DSPs. In addition, 
other chipsets such as SAMSUNG’s S3C6400 integrate 
hardware CODEC blocks to encode and decode video streams.  
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In these systems, the performance of the special hardware 
block determines the performance of the system and the quality 
of multimedia applications. Thus, the system needs to handle 
the hardware block efficiently without delays and jerking to 
support the high quality of multimedia applications. Since the 
hardware blocks are controlled by tasks (threads or processes), 
in terms of software, efficient handling of the tasks is crucial on 
the overall performance of the system and quality of 
multimedia applications. 

This paper presents an efficient real-time scheduling 
algorithm, hardware-aware rate monotonic scheduling (HA-
RMS), to manage the tasks which control special hardware 
blocks on the multimedia system. The proposed HA-RMS 
algorithm reduces the response time and output jitter of the 
tasks which control the hardware block. So, the utilization of 
the hardware block is increased, and the performance of 
multimedia applications will be greatly enhanced.  

Multimedia applications are required to play high-quality 
contents maintaining consistent quality during playback. A 
multimedia system must process a huge amount of 
computations to support high quality contents. In some systems, 
the main processor processes all computation to execute 
multimedia applications. However, most multimedia systems 
adopt a heterogeneous architecture to distribute computation 
power to special hardware blocks (DSPs, coprocessors, or 
special-purpose hardware IPs). In the heterogeneous 
multimedia system, the performance of the special hardware 
block determines the performance of the multimedia system 
because the special hardware block usually computes the 
heaviest part of computation. Therefore, the system needs to 
control the special hardware blocks efficiently to increase the 
performance of multimedia applications. 

In addition to supporting high-quality contents, maintaining 
consistent quality of playback is important in terms of the 
quality of multimedia applications. To reduce audio/video 
jerking and delays of playback, the system needs to reduce 
output jitters [9] and increase responsiveness to tasks. 
Therefore, an efficient scheduling of multimedia tasks is very 
important to guarantee QoS in multimedia applications 
because of real-time characteristics [1], [4], [6], [7]. Especially 
in the heterogeneous multimedia systems, we need to solve 
real-time issues of tasks which control the special hardware 
blocks to obtain the best quality of multimedia applications 
because the performance of special hardware blocks 
determines the performance of multimedia applications.  

In this paper, we present an efficient scheduling algorithm, 
the HA-RMS algorithm, to schedule the tasks that control 
hardware blocks on the heterogeneous multimedia systems. 
Applying the HA-RMS algorithm to the real-time multimedia 
applications, we show that the HA-RMS algorithm improves 

responsiveness and reduces output jitters of the tasks. As a 
result, we will prove that the HA-RMS algorithm enhances the 
performance of multimedia applications by reducing 
audio/video jerking and delays of audio/video playback.  

Section II presents the background and motivation. Section 
III describes system environments and task-models. Section IV 
introduces the proposed HA-RMS algorithm and compares it 
with the traditional RMS algorithm by employing some 
scenario examples. Evaluation and analysis of the results are 
shown in section V, and section VI concludes this paper.  

II. Motivation 

Nowadays, most multimedia system-on-chips (SoCs) are 
equipped with low-speed CPUs to reduce power consumption 
and unit price [8]. In these types of multimedia SoCs, they 
embed special hardware blocks inside the chipsets to 
supplement the lack of processing power due to the low-speed 
CPU. Hardware blocks on multimedia SoCs proceed certain 
computations which require heavy computation power and 
repeat the same computations frequently. For example, 
multimedia SoCs usually embed hardware blocks which 
decode and render video/audio streams. Meanwhile, these 
hardware blocks are controlled by software tasks (threads), and 
tasks dealing with hardware blocks have the following typical 
characteristics in comparison to traditional software-oriented 
tasks:  

Characteristic 1 (C1). Hardware tasks usually finish their 
job in a short time. Since most of their work is setting up a few 
hardware registers, they finish their job in a moment and 
release the processor resource back to other tasks soon. This is 
a concept close to the I/O-bound processes [10]. Therefore, 
their job execution time is much shorter than for one of the 
software tasks. 

Characteristic 2 (C2). Hardware tasks depend on the 
completion of the earlier requests. Since the hardware block is 
a resource which executes a single process at a time, tasks of 
controlling hardware blocks should be protected by MUTEX 
or be handled similarly. Moreover, its slow responsiveness 
results in poor utilization of the requested hardware block. 

Because of the C2, RMS scheduling is not a suitable 
algorithm to schedule tasks which control hardware blocks. 
Although not being dependent on a certain request, initiation or 
completion of other tasks, they depend on the completion of 
the hardware blocks operation. This fact implies that the tasks 
controlling hardware blocks should be scheduled within a 
proper time without delay. Otherwise, utilization of the 
hardware block will fall down. A detailed example for this  
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Table 1. Typical example of tasks in embedded SoC platform. 

Task Priority Job execution time Task type 

A High 30 ms Software task 

B Middle 1 ms Hardware task 

C Low 1 ms Hardware task 

 

 
issue will be shown in a later section. 

In case of the multimedia SoCs with special hardware blocks, 
some tasks are run by software only with CPU processing, that 
is, they occupy CPU in a long time while consuming most of 
processing power and other tasks control hardware blocks in a 
short time in order to increase system performance. Being 
preempted by software-tasks, hardware tasks wait for a long 
time until software-tasks are finished. In contrast, software-
tasks do not have to wait long even though preempted by many 
hardware-tasks because hardware-tasks are scheduled just for a 
short time (C2). For example, suppose that there are three tasks. 

In Table 1, if task B and C, hardware-tasks, are preempted by 
task A, each of tasks B and C is delayed by 30 ms per each 
request of task A. However, task A would be delayed only 1 ms 
per each request of task B and C after letting the priority of task 
A be the lowest. This observation provides us a suitable way to 
apply RMS algorithm with small modifications, taking both 
C1 and C2 characteristics of hardware and software tasks into 
consideration. 

With the unmodified RMS algorithm, if the period of a 
hardware-task is longer than that of a software-task which 
executes for a long time in a single request, the hardware task 
should be preempted by the software-task [2], [11]. As a result, 
the response time of hardware-task becomes worse due to the 
long period of preemption. However, dealing with hardware-
tasks separately, we can make hardware-tasks preempt 
software-tasks, and it will provide pretty short response time 
for the hardware-task. Although the response time of software-
task becomes longer in the result of modification, the amount 
of delay will be very small because hardware-tasks do not 
preempt software-tasks for a long time.  

III. System Model 

Since the HA-RMS algorithm originates from the RMS in 
terms of the software platform, it uses the same scheduling 
environments as in the original paper on RMS [11]. In [11]-
[14], a scheduling algorithm is based on the priority of each 
task, and is preemptive. That is, if a task has a higher priority 
than that of the task currently running, the current task must be 
immediately interrupted by the task with higher priority. Since 

 

Fig. 1. Location of HA-RMS algorithm on software platform.
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Fig. 2. Hardware platform of embedded multimedia SoC. 
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most of commercial real-time operating systems and even 
high-level operating systems provide priority-based preemptive 
schedulers, this algorithm would not be seriously dependent on 
the lower software platform, that is, less dependent on O/S and 
kernel.  

The location of the HA-RMS algorithm on the software 
platform is shown in Fig. 1. This algorithm is located in the 
threads configuration layer and runs when a process configures 
priorities of its own threads.  

The HA-RMS algorithm is mainly designed for embedded 
multimedia applications which operate on embedded 
multimedia SoCs where various multimedia contents like 
MPEG video are run. This paper, therefore, focuses on 
multimedia SoCs which embed special hardware blocks to 
operate complex and repeated computations. However, any 
other hardware systems which are equipped with a special 
hardware block controlled by software would become good 
candidates for the hardware platform to adopt the HA-RMS 
algorithm.  

Figure 2 shows a block diagram of an embedded multimedia 
SoC. Basic characteristics of tasks to be scheduled by the  
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Table 2. Simple task model applied to compare RMS with HA-RMS.

Task Period 
Priority by 

RMS 
Execution 

time 
Hardware 

use 
A Shortest 1 > 1 ms No 

B Middle 2 < 100 µs Yes 

C Longest 3 < 100 µs No 

 

HA-RMS algorithm are the same as those described in the 
original paper on RMS [11]. Tasks should be periodic with a 
fixed-priority, and the deadlines of tasks should be the same as 
the request interval of each task. In addition to the 
characteristics above, this paper provides a few task models to 
clearly show the advantage of HA-RMS over RMS:  

Model 1 (M1). A software-task which consumes huge 
computation power with the shortest request intervals. One 
example is an audio decoder task. 

Model 2 (M2). A hardware-task with a short job execution 
time and long hardware working period. An example is a task 
which controls the video decoder hardware. 

Model 3 (M3). A software-task with a short job execution 
time and the longest request intervals. An example is a data 
read/write task. 

According to the above classification, a simple task model is 
described in Table 2 and will be considered to analyze both 
RMS and HA-RMS algorithms in the following section.  

IV. Hardware-Aware Rate Monotonic Scheduling 

The RMS algorithm configures the priority of each task in 
the order of request latencies. The shorter request interval a task 
has, the higher priority it has. Figure 3 shows an example 
scenario of the RMS algorithm with three tasks which are 
modeled as examples of software-tasks and hardware tasks. 

Task A has characteristics of the M1 with the shortest request 
latency. Task B has characteristics of the M2 and its request 
interval is longer than the task A and shorter than the task C. 
Dotted lines in the figure stand for durations of hardware 
working. Task C has characteristics of the M3 with the longest 
request interval.  

In Fig. 3, task A, having the highest priority, executes as soon 
as the requests come. However, the responsiveness of task B is 
awful. First, due to lower priority, task B is preempted by task A 
which has a significantly long processing period. Furthermore, 
there is another important reason that causes the poor 
responsiveness of task B. The reason is that the period of 
hardware working (dotted-line in the figure) by the earlier 
request makes task B wait for the finish of the hardware job even  

 

Fig. 3. Scheduling scenario of RMS algorithm. 
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though the processor is available for task B to run on CPU. We 
define this phenomenon as hardware illusion on RMS. This 
causes several problems for the original RMS algorithm [1], 
[2], [13], [14]. 

The processor utilization proposed in the original RMS 
paper [11] becomes worse. In a critical situation, scheduling 
could be not-feasible even though RMS tells its feasible. The 
response time of a hardware-task is not guaranteed in a certain 
time. This will make unexpected output jitters [9] happen on 
the system. The utilization of the hardware block becomes poor 
due to bad responsiveness of hardware-tasks which are 
preempted by software-tasks with long execution times. 

The HA-RMS algorithm solves problems by exploiting 
characteristics of the hardware/software modules embedded in 
the multimedia SoC platform. Because hardware-tasks just set 
up a few hardware registers with neither complex computation 
nor heavy processing, they only occupy the processor resource 
for a very short time during each hardware request. This 
implies that, in terms of responsiveness, software-tasks are not 
significantly affected by hardware tasks which preempt 
software-tasks for the very short time. Furthermore, to increase 
utilization of the special hardware blocks, hardware-tasks 
which control the hardware blocks should have good 
responsiveness. 

In the HA-RMS algorithm, to improve the responsiveness of 
hardware-tasks and to utilize hardware blocks efficiently, 
hardware-tasks with short job execution time are grouped and 
dealt specially with higher priorities than those of software-
tasks. For example, they are grouped as scheduling classes 
similar to what is implemented in the Linux kernel [10]. The 
most recent Linux kernel not only supports two scheduling 
classes, RT and CFS, but also adds a new scheduling class if  
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Fig. 4. Pseudo-code of HA-RMS algorithm. 

//Step 1 
for ‘i’ from ‘0’ to ‘the # of tasks –1’ by ‘1’ incremental 
 if ‘Task[i] is a hardware-task’ 
  register to the hardware-tasks group 
 else 
  register to the software-tasks group 
//Step 2 
Set_Priority_by_RMS(software-tasks group, 0) 
//Step 3 to 5 
temp = Get_Highest_Priority_in_Group(software-tasks group)
Set_Priority_by_RMS(hardware-tasks group, temp) 
//functions 
Set_Priority_by_RMS(group, the lowest priority) 

setting priorities of tasks in ‘group’ with ‘the
lowest priority’ value 

      
Get_Highest_Priority_in_Group(group) 

return the highest priority value among tasks in
‘group’ 

 
 
needed. In a similar manner, hardware-tasks and software-tasks 
can be classified as two different scheduling classes, where a 
class of higher preference can fully preempt another class. The 
proposed HA-RMS algorithm is described by the following 
five steps:  

Step 1. Separate tasks into two groups: software-tasks and 
hardware-tasks. 

Step 2. Set up priorities of software-tasks with the 
unmodified RMS algorithm. 

Step 3. Make the order of priorities of hardware-tasks 
following the unmodified RMS algorithm. 

Step 4. Configure the priority of the lowest-priority task in 
the hardware-tasks group to be higher than the highest-priority 
task in the software-tasks group. 

Step 5. Configure priorities of hardware-tasks in the order 
decided on the step 3. 

Figure 4 shows a pseudo-code for the implemented 
algorithm. Regardless of the request latency of each task, all 
tasks in the hardware tasks group have higher priorities than 
those of tasks in a software-tasks group. Members in a group 
are then ordered by request latencies of each task. Tasks in the 
software-tasks group could be preempted by tasks in the 
hardware-tasks group, hence scheduling of the software task 
preempted by hardware task would be deferred. However, any 
delay due to the preemption should not be significantly long 
because job execution time of the hardware-task is 
characterized by a short execution time by its definition. Figure 
5 applies the HA-RMS algorithm to the same scheduling 
scenario to compare it with the RMS algorithm. 

The time complexity of the proposed HA-RMS algorithm 
remains the same as the original RMS. However, the priority  

 

Fig. 5. Scheduling scenario of HA-RMS algorithm. 
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setting of HA-RMS is a bit different. Task B has higher priority 
than that of task A because task B is a hardware-task, even 
though task A has shorter request time. As a result, the 
responsiveness of task B is drastically increased. Moreover 
there is no scheduling delay in this example. In other words, it 
reduces the output jitter of hardware block, so that it increases 
the hardware utilization [15]. Even though there is a bit delay 
of task A preempted by task B, this overhead incurred by HA-
RMS with preference on HW tasks over SW tasks, however, 
has little impact because job execution time of task B is very 
short. 

V. Experimental Evaluation 

An embedded media player application is employed to 
evaluate the proposed HA-RMS over the CL5500, a 
multimedia SoC developed by CoreLogic Co., Ltd. [16], 
which is used for mobile handset devices. The CL5500 SoC 
chipset is equipped with the ARM9 processor, which normally 
runs with a 133 MHz clock frequency (up to 540 MHz 
maximum frequency). Since the computation power of ARM 
CPU is not enough to run high-resolution video decoding and 
rendering, it embeds various special hardware blocks: video 
decoders (JPEG, MPEG2, MPEG4, H.264, and VC1), video 
renderer (Draw YUV422 image on display device), and other 
peripherals (I2C, DMA, GPIO, and others).  

On the CL5500 chipset, the NEOS real-time operating 
system [17] is installed to provide multithread scheduling 
environments. The NEOS is fit for evaluating RMS and HA-
RMS algorithms because it provides priority-based preemptive 
thread scheduling. Using the CL5500 hardware and NEOS 
operating system, an embedded media player is programmed 
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with five tasks (threads):  

Task 1 (T1). The video decoder task controls the video 
decoder hardware block to decode a frame of MPEG4 video 
stream [18]. Request of decoding a single video frame arises 
every 33 ms.  

Task 2 (T2). The video renderer task draws a frame of 
YUV422 image to LCD display device with controlling the 
video rendering hardware block. Request interval of rendering 
is the same as that of video decoding: 33 ms.  

Task 3 (T3). The audio decoder task decodes one frame of 
AAC audio stream [19]. It is fully run by the CPU processing. 
Hence, it consumes the largest amount of computation power 
among all tasks. One frame of AAC audio stream with 48 kHz 
sample-rate contains an amount of 24 ms of PCM data. 

Task 4 (T4). The audio render task pushes PCM data into a 
certain hardware buffer. It does not control any hardware block: 
it is a software-task. Request interval of rendering is the same 
as that of audio decoding: 24 ms.  

Task 5 (T5). A roll of a data read task is reading video and 
audio streams, which need to be decoded, using the file system 
service. Reading every 40 ms is enough to feed data into video 
decoder task and audio decoder task on this media player. 

With the traditional RMS, task priorities are determined by 
the order of request latency. T3 and T4, therefore, have the 
highest priorities. Strictly speaking, T3 and T4 should have 
the same priority, however, for convenience, T3 is set as the 
highest priority task and T4 as the second one. This 
modification does not distort the simulation result, but helps 
us to examine the job execution periods more explicitly. In 
the same manner, T1 has the third-highest priority and T2 the 
fourth. Finally, T5 will be configured as the lowest priority 
task. 

When applying the proposed HA-RMS to the given 
multimedia application, a new task priority is assigned to each 
task. T1 and T2 belong to the hardware-task group because T1 
and T2 control special hardware blocks, and the rest of tasks 
become members of the software-tasks group. T1 and T2 in the 
hardware-tasks group have the same request intervals, however, 
for convenience, T1 is set to have a higher priority than T2. 
Similarly, T3 is set as the highest one and T4 as the second one, 
T5 then becomes the lowest priority task in the software-tasks 
group. Finally, the lowest priority task T2 in the hardware 
group should have higher priority than that of the highest 
priority task T3 in the software-tasks group according to HA-
RMS. 

While processing the multimedia application up to 500 
requests of T1, its average response time, defined by the 
average delay time between a request and its actual processing,  

Table 3. Multimedia tasks evaluated in the experiment. 

Task Task type
Request 
interval 

Execution 
time 

Priority  
by HA-RMS

T1 HW 33 ms 50 µs 1 

T2 HW 33 ms 50 µs 2 

T3 SW 24 ms 13,000 µs 3 

T4 SW 24 ms 30 µs 4 

T5 SW 40 ms 1,000 µs 5 

 

 

Fig. 6. Average response time. 
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Fig. 7. Number of missed deadlines. 
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is measured as a performance metric of responsiveness for 
each task. In addition, whether some requests of the hardware-
tasks are ignored or not is checked, and the number of 
occurrences is counted. In cases where the hardware is still 
processing the precedent request when a new request comes 
and the task is scheduled on CPU, the new request should be 
ignored and the job by the new request is skipped. This count 
stands for the number of happenings of hardware illusion on 
RMS, and represents that the system has output jitters and is 
operating with poor hardware utilization.  

As shown in Fig. 6, when applying the HA-RMS algorithm, 
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the average response time of hardware tasks T1 and T2 is 
drastically down as an amount of over 7.300 ms compared 
with that of the RMS algorithm. Nevertheless, the results tell us 
that its impact on the responsiveness of software tasks T3, T4, 
and T5 are very small. T3 is delayed as 0.084 ms, 0.066 ms for 
T4, and 0.101 ms for T5. Thus, the above results prove that the 
HA-RMS algorithm greatly enhances responsiveness of 
hardware tasks with little impact on that of software tasks. 

To evaluate a real-time QoS for the multimedia application, 
the number of deadline misses, called deadline miss rate, is 
measured as shown in Fig. 7. When applying RMS, there were 
33 missed-request cases, that is, 33 hardware-illusion events for 
364 requests because the precedent request was still processing 
at the moment that a new request arrived. However, these 
phenomena never happen when applying HA-RMS. It also 
shows that the proposed HA-RMS algorithm can provide 
much better hardware utilization than that of the RMS 
algorithm because the HA-RMS algorithm drastically reduces 
the hardware illusion problem.  

VI. Conclusion 

An embedded multimedia system usually adopts special 
hardware blocks to fulfill some multimedia data processing 
tasks to increase performance of the system and the quality of 
multimedia applications. Traditional RM scheduling has no 
way to support the employed hardware blocks and prioritize 
hardware tasks over software tasks, resulting in a poor 
utilization factor. Therefore, this paper presents a new 
hardware-aware RM scheduling of embedded multimedia 
tasks by differentiating hardware tasks to increase the quality of 
real-time audio/video applications and provide better hardware 
utilization. The experimental results show that the HA-RMS 
greatly enhances the responsiveness of hardware tasks with 
little impact on that of software tasks and reduces the output 
jitter drastically.  

As future work, we plan to study the impact of HA-RMS 
along with the current trend of multi-core architectures. The 
proposed HA-RMS could be adapted to multi-core systems by 
exploiting its hardware awareness and grouping tasks of each 
core to increase utilization of special hardware blocks and 
reduce their response time. 
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