
ETRI Journal, Volume 32, Number 5, October 2010 © 2010 Jaebeom Park et al. 657

Many embedded multimedia systems employ special
hardware blocks to co-process with the main processor.
Even though an efficient handling of such hardware
blocks is critical on the overall performance of real-time
multimedia systems, traditional real-time scheduling
techniques cannot afford to guarantee a high quality of
multimedia playbacks with neither delay nor jerking. This
paper presents a hardware-aware rate monotonic
scheduling (HA-RMS) algorithm to manage hardware
tasks efficiently and handle special hardware blocks in the
embedded multimedia system. The HA-RMS prioritizes
the hardware tasks over software tasks not only to
increase the hardware utilization of the system but also to
reduce the output jitter of multimedia applications, which
results in reducing the overall response time.

Keywords: Hardware-awareness, real-time scheduling,
embedded multimedia systems.

Manuscript received Feb. 22, 2010; revised June 8, 2010; accepted July 15, 2010.
This work was supported by the Daegu University Research Grant, 2009.
Jaebeom Park (email: jbm.park@samsung.com) is with the Optics and Imaging Division,

Samsung Techwin Co. Ltd., Seoul, Rep. of Korea.
Joonhyuk Yoo (correspondence author, email: joonhyuk@daegu.ac.kr) is with the College of

Information and Communication Engineering, Daegu University, Gyeongsan, Rep. of Korea.
doi:10.4218/etrij.10.1510.0027

I. Introduction

An embedded multimedia system must guarantee the
specific rate and timing requirements to deliver or stream
continuous media data such as audio and video [1], [2]. In
general, multimedia systems have the following
characteristics [3]-[7]. First, a typical requirement of
continuous media is that data must be delivered to a client by
a certain deadline because data arriving after the presentation
time is unusable. Multimedia systems thus require hard real-
time scheduling to ensure that a critical task should be
serviced within a guaranteed period of time. Second,
multimedia applications are sensitive to timing delays during
playback. Once a continuous media file is delivered to a
client, delivery must continue at a certain rate during
playback of the media. When missing the deadline due to the
output jitter, the quality of multimedia applications severely
degrades and the listener or viewer will be subjected to long
pauses or lost frames of video during the presentation due to
the jitter. Thus, minimizing these timing delays provides a
certain quality of service (QoS) guarantee.

Multimedia data generally requires huge computational
power because compression, decoding, and rendering may
require significant CPU processing [4], [6]-[8]. Most of
embedded multimedia systems are currently employing special
hardware blocks to co-process with the main processor to
support multimedia applications of high quality and
compensate for its demanding computational power [8]. For
example, Qualcomm’s MSM chipsets equip two DSPs inside
their chipsets to support multimedia applications, and TI’s
OMAP chipsets also embed one or more DSPs. In addition,
other chipsets such as SAMSUNG’s S3C6400 integrate
hardware CODEC blocks to encode and decode video streams.

Hardware-Aware Rate Monotonic Scheduling
Algorithm for Embedded Multimedia Systems

 Jaebeom Park and Joonhyuk Yoo

658 Jaebeom Park et al. ETRI Journal, Volume 32, Number 5, October 2010

In these systems, the performance of the special hardware
block determines the performance of the system and the quality
of multimedia applications. Thus, the system needs to handle
the hardware block efficiently without delays and jerking to
support the high quality of multimedia applications. Since the
hardware blocks are controlled by tasks (threads or processes),
in terms of software, efficient handling of the tasks is crucial on
the overall performance of the system and quality of
multimedia applications.

This paper presents an efficient real-time scheduling
algorithm, hardware-aware rate monotonic scheduling (HA-
RMS), to manage the tasks which control special hardware
blocks on the multimedia system. The proposed HA-RMS
algorithm reduces the response time and output jitter of the
tasks which control the hardware block. So, the utilization of
the hardware block is increased, and the performance of
multimedia applications will be greatly enhanced.

Multimedia applications are required to play high-quality
contents maintaining consistent quality during playback. A
multimedia system must process a huge amount of
computations to support high quality contents. In some systems,
the main processor processes all computation to execute
multimedia applications. However, most multimedia systems
adopt a heterogeneous architecture to distribute computation
power to special hardware blocks (DSPs, coprocessors, or
special-purpose hardware IPs). In the heterogeneous
multimedia system, the performance of the special hardware
block determines the performance of the multimedia system
because the special hardware block usually computes the
heaviest part of computation. Therefore, the system needs to
control the special hardware blocks efficiently to increase the
performance of multimedia applications.

In addition to supporting high-quality contents, maintaining
consistent quality of playback is important in terms of the
quality of multimedia applications. To reduce audio/video
jerking and delays of playback, the system needs to reduce
output jitters [9] and increase responsiveness to tasks.
Therefore, an efficient scheduling of multimedia tasks is very
important to guarantee QoS in multimedia applications
because of real-time characteristics [1], [4], [6], [7]. Especially
in the heterogeneous multimedia systems, we need to solve
real-time issues of tasks which control the special hardware
blocks to obtain the best quality of multimedia applications
because the performance of special hardware blocks
determines the performance of multimedia applications.

In this paper, we present an efficient scheduling algorithm,
the HA-RMS algorithm, to schedule the tasks that control
hardware blocks on the heterogeneous multimedia systems.
Applying the HA-RMS algorithm to the real-time multimedia
applications, we show that the HA-RMS algorithm improves

responsiveness and reduces output jitters of the tasks. As a
result, we will prove that the HA-RMS algorithm enhances the
performance of multimedia applications by reducing
audio/video jerking and delays of audio/video playback.

Section II presents the background and motivation. Section
III describes system environments and task-models. Section IV
introduces the proposed HA-RMS algorithm and compares it
with the traditional RMS algorithm by employing some
scenario examples. Evaluation and analysis of the results are
shown in section V, and section VI concludes this paper.

II. Motivation

Nowadays, most multimedia system-on-chips (SoCs) are
equipped with low-speed CPUs to reduce power consumption
and unit price [8]. In these types of multimedia SoCs, they
embed special hardware blocks inside the chipsets to
supplement the lack of processing power due to the low-speed
CPU. Hardware blocks on multimedia SoCs proceed certain
computations which require heavy computation power and
repeat the same computations frequently. For example,
multimedia SoCs usually embed hardware blocks which
decode and render video/audio streams. Meanwhile, these
hardware blocks are controlled by software tasks (threads), and
tasks dealing with hardware blocks have the following typical
characteristics in comparison to traditional software-oriented
tasks:

Characteristic 1 (C1). Hardware tasks usually finish their
job in a short time. Since most of their work is setting up a few
hardware registers, they finish their job in a moment and
release the processor resource back to other tasks soon. This is
a concept close to the I/O-bound processes [10]. Therefore,
their job execution time is much shorter than for one of the
software tasks.

Characteristic 2 (C2). Hardware tasks depend on the
completion of the earlier requests. Since the hardware block is
a resource which executes a single process at a time, tasks of
controlling hardware blocks should be protected by MUTEX
or be handled similarly. Moreover, its slow responsiveness
results in poor utilization of the requested hardware block.

Because of the C2, RMS scheduling is not a suitable
algorithm to schedule tasks which control hardware blocks.
Although not being dependent on a certain request, initiation or
completion of other tasks, they depend on the completion of
the hardware blocks operation. This fact implies that the tasks
controlling hardware blocks should be scheduled within a
proper time without delay. Otherwise, utilization of the
hardware block will fall down. A detailed example for this

ETRI Journal, Volume 32, Number 5, October 2010 Jaebeom Park et al. 659

Table 1. Typical example of tasks in embedded SoC platform.

Task Priority Job execution time Task type

A High 30 ms Software task

B Middle 1 ms Hardware task

C Low 1 ms Hardware task

issue will be shown in a later section.

In case of the multimedia SoCs with special hardware blocks,
some tasks are run by software only with CPU processing, that
is, they occupy CPU in a long time while consuming most of
processing power and other tasks control hardware blocks in a
short time in order to increase system performance. Being
preempted by software-tasks, hardware tasks wait for a long
time until software-tasks are finished. In contrast, software-
tasks do not have to wait long even though preempted by many
hardware-tasks because hardware-tasks are scheduled just for a
short time (C2). For example, suppose that there are three tasks.

In Table 1, if task B and C, hardware-tasks, are preempted by
task A, each of tasks B and C is delayed by 30 ms per each
request of task A. However, task A would be delayed only 1 ms
per each request of task B and C after letting the priority of task
A be the lowest. This observation provides us a suitable way to
apply RMS algorithm with small modifications, taking both
C1 and C2 characteristics of hardware and software tasks into
consideration.

With the unmodified RMS algorithm, if the period of a
hardware-task is longer than that of a software-task which
executes for a long time in a single request, the hardware task
should be preempted by the software-task [2], [11]. As a result,
the response time of hardware-task becomes worse due to the
long period of preemption. However, dealing with hardware-
tasks separately, we can make hardware-tasks preempt
software-tasks, and it will provide pretty short response time
for the hardware-task. Although the response time of software-
task becomes longer in the result of modification, the amount
of delay will be very small because hardware-tasks do not
preempt software-tasks for a long time.

III. System Model

Since the HA-RMS algorithm originates from the RMS in
terms of the software platform, it uses the same scheduling
environments as in the original paper on RMS [11]. In [11]-
[14], a scheduling algorithm is based on the priority of each
task, and is preemptive. That is, if a task has a higher priority
than that of the task currently running, the current task must be
immediately interrupted by the task with higher priority. Since

Fig. 1. Location of HA-RMS algorithm on software platform.

Operating system
(including priority-based preemptive scheduler)

Process A Process B

Thread 1
Thread 2

Thread 3 Thread 1
Thread 2

Thread 3

Threads configuration Threads configuration

Fig. 2. Hardware platform of embedded multimedia SoC.

Multimedia SoC

CPU Memory

Video
codec

USB/
network

Display
unit

Peripherals

TV/
LCD

Camera
interface

Camera
sensor

Fully hard-wired block, handled in hard-real-time

bus

most of commercial real-time operating systems and even
high-level operating systems provide priority-based preemptive
schedulers, this algorithm would not be seriously dependent on
the lower software platform, that is, less dependent on O/S and
kernel.

The location of the HA-RMS algorithm on the software
platform is shown in Fig. 1. This algorithm is located in the
threads configuration layer and runs when a process configures
priorities of its own threads.

The HA-RMS algorithm is mainly designed for embedded
multimedia applications which operate on embedded
multimedia SoCs where various multimedia contents like
MPEG video are run. This paper, therefore, focuses on
multimedia SoCs which embed special hardware blocks to
operate complex and repeated computations. However, any
other hardware systems which are equipped with a special
hardware block controlled by software would become good
candidates for the hardware platform to adopt the HA-RMS
algorithm.

Figure 2 shows a block diagram of an embedded multimedia
SoC. Basic characteristics of tasks to be scheduled by the

660 Jaebeom Park et al. ETRI Journal, Volume 32, Number 5, October 2010

Table 2. Simple task model applied to compare RMS with HA-RMS.

Task Period
Priority by

RMS
Execution

time
Hardware

use
A Shortest 1 > 1 ms No

B Middle 2 < 100 µs Yes

C Longest 3 < 100 µs No

HA-RMS algorithm are the same as those described in the
original paper on RMS [11]. Tasks should be periodic with a
fixed-priority, and the deadlines of tasks should be the same as
the request interval of each task. In addition to the
characteristics above, this paper provides a few task models to
clearly show the advantage of HA-RMS over RMS:

Model 1 (M1). A software-task which consumes huge
computation power with the shortest request intervals. One
example is an audio decoder task.

Model 2 (M2). A hardware-task with a short job execution
time and long hardware working period. An example is a task
which controls the video decoder hardware.

Model 3 (M3). A software-task with a short job execution
time and the longest request intervals. An example is a data
read/write task.

According to the above classification, a simple task model is
described in Table 2 and will be considered to analyze both
RMS and HA-RMS algorithms in the following section.

IV. Hardware-Aware Rate Monotonic Scheduling

The RMS algorithm configures the priority of each task in
the order of request latencies. The shorter request interval a task
has, the higher priority it has. Figure 3 shows an example
scenario of the RMS algorithm with three tasks which are
modeled as examples of software-tasks and hardware tasks.

Task A has characteristics of the M1 with the shortest request
latency. Task B has characteristics of the M2 and its request
interval is longer than the task A and shorter than the task C.
Dotted lines in the figure stand for durations of hardware
working. Task C has characteristics of the M3 with the longest
request interval.

In Fig. 3, task A, having the highest priority, executes as soon
as the requests come. However, the responsiveness of task B is
awful. First, due to lower priority, task B is preempted by task A
which has a significantly long processing period. Furthermore,
there is another important reason that causes the poor
responsiveness of task B. The reason is that the period of
hardware working (dotted-line in the figure) by the earlier
request makes task B wait for the finish of the hardware job even

Fig. 3. Scheduling scenario of RMS algorithm.

Task A

Task C

Dotted-line box indicates
hardware working time

Task B

RMS

Black arrows specify delays from
requests to scheduling of the task B

Priority for
tasks

*Scheduling delay by hardware busy

though the processor is available for task B to run on CPU. We
define this phenomenon as hardware illusion on RMS. This
causes several problems for the original RMS algorithm [1],
[2], [13], [14].

The processor utilization proposed in the original RMS
paper [11] becomes worse. In a critical situation, scheduling
could be not-feasible even though RMS tells its feasible. The
response time of a hardware-task is not guaranteed in a certain
time. This will make unexpected output jitters [9] happen on
the system. The utilization of the hardware block becomes poor
due to bad responsiveness of hardware-tasks which are
preempted by software-tasks with long execution times.

The HA-RMS algorithm solves problems by exploiting
characteristics of the hardware/software modules embedded in
the multimedia SoC platform. Because hardware-tasks just set
up a few hardware registers with neither complex computation
nor heavy processing, they only occupy the processor resource
for a very short time during each hardware request. This
implies that, in terms of responsiveness, software-tasks are not
significantly affected by hardware tasks which preempt
software-tasks for the very short time. Furthermore, to increase
utilization of the special hardware blocks, hardware-tasks
which control the hardware blocks should have good
responsiveness.

In the HA-RMS algorithm, to improve the responsiveness of
hardware-tasks and to utilize hardware blocks efficiently,
hardware-tasks with short job execution time are grouped and
dealt specially with higher priorities than those of software-
tasks. For example, they are grouped as scheduling classes
similar to what is implemented in the Linux kernel [10]. The
most recent Linux kernel not only supports two scheduling
classes, RT and CFS, but also adds a new scheduling class if

ETRI Journal, Volume 32, Number 5, October 2010 Jaebeom Park et al. 661

Fig. 4. Pseudo-code of HA-RMS algorithm.

//Step 1
for ‘i’ from ‘0’ to ‘the # of tasks –1’ by ‘1’ incremental
 if ‘Task[i] is a hardware-task’
 register to the hardware-tasks group
 else
 register to the software-tasks group
//Step 2
Set_Priority_by_RMS(software-tasks group, 0)
//Step 3 to 5
temp = Get_Highest_Priority_in_Group(software-tasks group)
Set_Priority_by_RMS(hardware-tasks group, temp)
//functions
Set_Priority_by_RMS(group, the lowest priority)

setting priorities of tasks in ‘group’ with ‘the
lowest priority’ value

Get_Highest_Priority_in_Group(group)

return the highest priority value among tasks in
‘group’

needed. In a similar manner, hardware-tasks and software-tasks
can be classified as two different scheduling classes, where a
class of higher preference can fully preempt another class. The
proposed HA-RMS algorithm is described by the following
five steps:

Step 1. Separate tasks into two groups: software-tasks and
hardware-tasks.

Step 2. Set up priorities of software-tasks with the
unmodified RMS algorithm.

Step 3. Make the order of priorities of hardware-tasks
following the unmodified RMS algorithm.

Step 4. Configure the priority of the lowest-priority task in
the hardware-tasks group to be higher than the highest-priority
task in the software-tasks group.

Step 5. Configure priorities of hardware-tasks in the order
decided on the step 3.

Figure 4 shows a pseudo-code for the implemented
algorithm. Regardless of the request latency of each task, all
tasks in the hardware tasks group have higher priorities than
those of tasks in a software-tasks group. Members in a group
are then ordered by request latencies of each task. Tasks in the
software-tasks group could be preempted by tasks in the
hardware-tasks group, hence scheduling of the software task
preempted by hardware task would be deferred. However, any
delay due to the preemption should not be significantly long
because job execution time of the hardware-task is
characterized by a short execution time by its definition. Figure
5 applies the HA-RMS algorithm to the same scheduling
scenario to compare it with the RMS algorithm.

The time complexity of the proposed HA-RMS algorithm
remains the same as the original RMS. However, the priority

Fig. 5. Scheduling scenario of HA-RMS algorithm.

Task A

Task C

Dotted-line box indicates
hardware working time

Task B

Short scheduling delay of ‘task A’
due to preemption by task B

HA-RMS

Priority for
tasks

setting of HA-RMS is a bit different. Task B has higher priority
than that of task A because task B is a hardware-task, even
though task A has shorter request time. As a result, the
responsiveness of task B is drastically increased. Moreover
there is no scheduling delay in this example. In other words, it
reduces the output jitter of hardware block, so that it increases
the hardware utilization [15]. Even though there is a bit delay
of task A preempted by task B, this overhead incurred by HA-
RMS with preference on HW tasks over SW tasks, however,
has little impact because job execution time of task B is very
short.

V. Experimental Evaluation

An embedded media player application is employed to
evaluate the proposed HA-RMS over the CL5500, a
multimedia SoC developed by CoreLogic Co., Ltd. [16],
which is used for mobile handset devices. The CL5500 SoC
chipset is equipped with the ARM9 processor, which normally
runs with a 133 MHz clock frequency (up to 540 MHz
maximum frequency). Since the computation power of ARM
CPU is not enough to run high-resolution video decoding and
rendering, it embeds various special hardware blocks: video
decoders (JPEG, MPEG2, MPEG4, H.264, and VC1), video
renderer (Draw YUV422 image on display device), and other
peripherals (I2C, DMA, GPIO, and others).

On the CL5500 chipset, the NEOS real-time operating
system [17] is installed to provide multithread scheduling
environments. The NEOS is fit for evaluating RMS and HA-
RMS algorithms because it provides priority-based preemptive
thread scheduling. Using the CL5500 hardware and NEOS
operating system, an embedded media player is programmed

662 Jaebeom Park et al. ETRI Journal, Volume 32, Number 5, October 2010

with five tasks (threads):

Task 1 (T1). The video decoder task controls the video
decoder hardware block to decode a frame of MPEG4 video
stream [18]. Request of decoding a single video frame arises
every 33 ms.

Task 2 (T2). The video renderer task draws a frame of
YUV422 image to LCD display device with controlling the
video rendering hardware block. Request interval of rendering
is the same as that of video decoding: 33 ms.

Task 3 (T3). The audio decoder task decodes one frame of
AAC audio stream [19]. It is fully run by the CPU processing.
Hence, it consumes the largest amount of computation power
among all tasks. One frame of AAC audio stream with 48 kHz
sample-rate contains an amount of 24 ms of PCM data.

Task 4 (T4). The audio render task pushes PCM data into a
certain hardware buffer. It does not control any hardware block:
it is a software-task. Request interval of rendering is the same
as that of audio decoding: 24 ms.

Task 5 (T5). A roll of a data read task is reading video and
audio streams, which need to be decoded, using the file system
service. Reading every 40 ms is enough to feed data into video
decoder task and audio decoder task on this media player.

With the traditional RMS, task priorities are determined by
the order of request latency. T3 and T4, therefore, have the
highest priorities. Strictly speaking, T3 and T4 should have
the same priority, however, for convenience, T3 is set as the
highest priority task and T4 as the second one. This
modification does not distort the simulation result, but helps
us to examine the job execution periods more explicitly. In
the same manner, T1 has the third-highest priority and T2 the
fourth. Finally, T5 will be configured as the lowest priority
task.

When applying the proposed HA-RMS to the given
multimedia application, a new task priority is assigned to each
task. T1 and T2 belong to the hardware-task group because T1
and T2 control special hardware blocks, and the rest of tasks
become members of the software-tasks group. T1 and T2 in the
hardware-tasks group have the same request intervals, however,
for convenience, T1 is set to have a higher priority than T2.
Similarly, T3 is set as the highest one and T4 as the second one,
T5 then becomes the lowest priority task in the software-tasks
group. Finally, the lowest priority task T2 in the hardware
group should have higher priority than that of the highest
priority task T3 in the software-tasks group according to HA-
RMS.

While processing the multimedia application up to 500
requests of T1, its average response time, defined by the
average delay time between a request and its actual processing,

Table 3. Multimedia tasks evaluated in the experiment.

Task Task type
Request
interval

Execution
time

Priority
by HA-RMS

T1 HW 33 ms 50 µs 1

T2 HW 33 ms 50 µs 2

T3 SW 24 ms 13,000 µs 3

T4 SW 24 ms 30 µs 4

T5 SW 40 ms 1,000 µs 5

Fig. 6. Average response time.

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000 7.326

0.000

7.366

0.000 0.006 0.090 0.028 0.094

4.598 4.699

[T1] [T2] [T3] [T4] [T5]

RMS HA-RMS

Fig. 7. Number of missed deadlines.

400

350

300

250

200

150

100

50

0

364 364 364 364

33 33
0 0

[T1] [T2] [T1] [T2]

RMS HA-RMS

of requests # of skipped requests (*)

is measured as a performance metric of responsiveness for
each task. In addition, whether some requests of the hardware-
tasks are ignored or not is checked, and the number of
occurrences is counted. In cases where the hardware is still
processing the precedent request when a new request comes
and the task is scheduled on CPU, the new request should be
ignored and the job by the new request is skipped. This count
stands for the number of happenings of hardware illusion on
RMS, and represents that the system has output jitters and is
operating with poor hardware utilization.

As shown in Fig. 6, when applying the HA-RMS algorithm,

ETRI Journal, Volume 32, Number 5, October 2010 Jaebeom Park et al. 663

the average response time of hardware tasks T1 and T2 is
drastically down as an amount of over 7.300 ms compared
with that of the RMS algorithm. Nevertheless, the results tell us
that its impact on the responsiveness of software tasks T3, T4,
and T5 are very small. T3 is delayed as 0.084 ms, 0.066 ms for
T4, and 0.101 ms for T5. Thus, the above results prove that the
HA-RMS algorithm greatly enhances responsiveness of
hardware tasks with little impact on that of software tasks.

To evaluate a real-time QoS for the multimedia application,
the number of deadline misses, called deadline miss rate, is
measured as shown in Fig. 7. When applying RMS, there were
33 missed-request cases, that is, 33 hardware-illusion events for
364 requests because the precedent request was still processing
at the moment that a new request arrived. However, these
phenomena never happen when applying HA-RMS. It also
shows that the proposed HA-RMS algorithm can provide
much better hardware utilization than that of the RMS
algorithm because the HA-RMS algorithm drastically reduces
the hardware illusion problem.

VI. Conclusion

An embedded multimedia system usually adopts special
hardware blocks to fulfill some multimedia data processing
tasks to increase performance of the system and the quality of
multimedia applications. Traditional RM scheduling has no
way to support the employed hardware blocks and prioritize
hardware tasks over software tasks, resulting in a poor
utilization factor. Therefore, this paper presents a new
hardware-aware RM scheduling of embedded multimedia
tasks by differentiating hardware tasks to increase the quality of
real-time audio/video applications and provide better hardware
utilization. The experimental results show that the HA-RMS
greatly enhances the responsiveness of hardware tasks with
little impact on that of software tasks and reduces the output
jitter drastically.

As future work, we plan to study the impact of HA-RMS
along with the current trend of multi-core architectures. The
proposed HA-RMS could be adapted to multi-core systems by
exploiting its hardware awareness and grouping tasks of each
core to increase utilization of special hardware blocks and
reduce their response time.

Acknowledgments

We would like to thank Chuck Yoo at Korea University. He
generously contributed his insightful feedback on early draft of
this paper. We owe our special thanks to anonymous reviewers
for their valuable comments and suggestions.

References

[1] M.V.P. Rao and K. Shet, “A Research in Real Time Scheduling
Policy for Embedded System Domain,” CLEI Electron. J., vol. 12,
no. 2, Aug. 2009.

[2] L. Sha et al., “Real Time Scheduling Theory: A Historical
Perspective,” Real-Time Systems, vol. 18 no. 2, 2004, pp. 46-61.

[3] G. Buttazzo, “Rate Monotonic vs. EDF: Judgement Day,” Real-
Time Syst., vol. 29, no. 1, 2005 pp. 5-26.

[4] A. Silberschatz, P. Galvin, and G. Gagne, Operating System
Concepts, 8th ed., NJ, USA: John Wiley and Sons, 2009.

[5] R. Steinmetz, “Analyzing the Multimedia Operating System,”
IEEE Multimedia, vol. 2, no. 1 Mar. 1995, pp. 68-84.

[6] B. Ahn et al., “A Real Time Scheduling Method for Embedded
Multimedia Applications,” Proc. Int. Conf. Pervasive Syst.
Computing, June 2006, pp. 104-107.

[7] J. Nieh and M.S. Lam, “A SMART Scheduler for Multimedia
Applications,” ACM Trans. Comput. Syst., vol. 21 no. 2, May
2003, pp. 117-163.

[8] W. Kim, J. Chang, and H. Cho, “Pipelined Scheduling of
Functional HW/SW Modules for Platform-Based SoC Design,”
ETRI J., vol. 27, no. 5, Oct. 2005, pp. 533-538.

[9] S. Baruah et al., “Scheduling Periodic Task Systems to Minimize
Output Jitter,” Proc. 6th Int. Conf. Real-Time Computing Syst.
Appl., Dec. 1999, pp. 62-69.

[10] R. Love, Linux Kernel Development, 2nd ed., Indiana, USA:
Novell, 2005.

[11] C.L. Liu and J.W. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment,” J. ACM,
vol. 20, no. 1, Jan. 1973, pp. 46-61.

[12] Y. Manabe and S. Aoyagi, “A Feasibility Decision Algorithm for
Rate Monotonic and Deadline Monotonic Scheduling,” Real-
Time Syst., vol. 14, no. 2, Mar. 1998, pp. 171-181.

[13] E. Bini and G. Buttazzo, “Schedulability Analysis of Periodic
Fixed Priority Systems,” IEEE Trans. Comput., vol. 53, no. 11,
Nov. 2004, pp. 1462-1473.

[14] C. Yaashuwanth and R. Ramesh, “A New Scheduling Algorithm
for Real Time Tasks,” Int. J. Comput. Sci. Inf. Security, vol. 6, no.
2, 2009, pp. 61-66.

[15] F.M. Proctor and W.P. Shackledford, “Real-Time Operating
System Timing Jitter and Its Impact on Motor Control,” Proc. Int.
Conf. Sensors and Controls for Intelligent Manufacturing, Oct.
2001, pp. 10-16.

[16] CoreLogic Co. Ltd. Available: http://www.corelogic.co.kr
[17] NEOS Real-Time Operating System. Available: http://www.

mdstec.com/main/english/?no=254
[18] ISO/IEC Standard, “Information Technology: Coding of Audio-

Visual Objects—part2: Visual,” ISO/IEC 14496-2, Jun. 2004.
[19] ISO/IEC Standard, “Information Technology: Coding of Audio-

Visual Objects-Part3: Audio,” ISO/IEC 14496-3, Sept. 2009.

664 Jaebeom Park et al. ETRI Journal, Volume 32, Number 5, October 2010

Jaebeom Park is a research engineer of the
Department of Security Solution in Samsung
Techwin Co., Ltd. and is currently developing
system software for ISP and SoC applications.
He received the BS from the POSTECH, Korea,
in 2003, and the MS from the Georgia Institute
of Technology, in 2009, respectively. He has a

7-year research career on embedded system software, device driver,
and middleware on mobile multimedia systems. His research interests
include real-time scheduling in RTOS on embedded SoC, balancing
real-time tasks and user tasks in Linux, and building common device
drivers for RTOS and Linux.

Joonhyuk Yoo is a faculty member of the
Department of Computer and Communication
Engineering at Daegu University, South Korea.
He received his BS and MS in electronic and
electrical engineering from the POSTECH, and
MS and PhD degrees in computer engineering
from the University of Maryland at College

Park, USA. Prior to joining Daegu University, he was a research
faculty member of the Department of Embedded Software at Korea
University and was an embedded system engineer at Samsung
Electronics Co., Ltd. His research interests are in embedded software,
computer architecture, and cyber physical systems.

