• 제목/요약/키워드: Embedded Computing Technologies

검색결과 43건 처리시간 0.022초

A Survey on Concepts, Applications, and Challenges in Cyber-Physical Systems

  • Gunes, Volkan;Peter, Steffen;Givargis, Tony;Vahid, Frank
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권12호
    • /
    • pp.4242-4268
    • /
    • 2014
  • The Cyber-Physical System (CPS) is a term describing a broad range of complex, multi-disciplinary, physically-aware next generation engineered system that integrates embedded computing technologies (cyber part) into the physical world. In order to define and understand CPS more precisely, this article presents a detailed survey of the related work, discussing the origin of CPS, the relations to other research fields, prevalent concepts, and practical applications. Further, this article enumerates an extensive set of technical challenges and uses specific applications to elaborate and provide insight into each specific concept. CPS is a very broad research area and therefore has diverse applications spanning different scales. Additionally, the next generation technologies are expected to play an important role on CPS research. All of CPS applications need to be designed considering the cutting-edge technologies, necessary system-level requirements, and overall impact on the real world.

내장형 시스템을 위한 실시간 데이터베이스 엔진 설계 및 구현 (The Design and Implementation of a Real-Time Database Engine For Embedded Systems)

  • 김흥섭;문승진
    • 인터넷정보학회논문지
    • /
    • 제3권5호
    • /
    • pp.19-29
    • /
    • 2002
  • 정보화 사회가 가속됨에 따라 첨단 기능을 탑재한 많은 기기들이 만들어지고 있다. 기존의 펌웨어로 기능을 구현하는 데는 많은 제약 사항들이 생기게 되었다. 펌웨어의 대안으로 등장하기 시작한 것이 임베디드 운영체제이다. 임베디드 리눅스는 기존의 임베디드 운영체제의 고비용의 문제를 해결할 수 있는 방안으로 주목을 받기 시작을 했으며, 많은 연구가 진행되고 있다. 리눅스는 많은 프로그램을 가지고 있다. 그러나, 임베디드 데이터베이스 프로그램들은 고가의 비용을 요구하고 있다. 본 논문에서 제시하는 ERT DE는 기존의 오픈되어진 소스를 리눅스에서 가능하게 하였으며, 쿼리 레벨에서의 리얼타임 기능을 구현하고자한다.

  • PDF

모바일/임베디드 객체 및 장면 인식 기술 동향 (Recent Trends of Object and Scene Recognition Technologies for Mobile/Embedded Devices)

  • 이수웅;이근동;고종국;이승재;유원영
    • 전자통신동향분석
    • /
    • 제34권6호
    • /
    • pp.133-144
    • /
    • 2019
  • Although deep learning-based visual image recognition technology has evolved rapidly, most of the commonly used methods focus solely on recognition accuracy. However, the demand for low latency and low power consuming image recognition with an acceptable accuracy is rising for practical applications in edge devices. For example, most Internet of Things (IoT) devices have a low computing power requiring more pragmatic use of these technologies; in addition, drones or smartphones have limited battery capacity again requiring practical applications that take this into consideration. Furthermore, some people do not prefer that central servers process their private images, as is required by high performance serverbased recognition technologies. To address these demands, the object and scene recognition technologies for mobile/embedded devices that enable optimized neural networks to operate in mobile and embedded environments are gaining attention. In this report, we briefly summarize the recent trends and issues of object and scene recognition technologies for mobile and embedded devices.

시각 장애우를 위한 Wearable Computing System (Wearable Computing System for the bland persons)

  • 김형호;최선희;조태종;김순주;장재인
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.261-263
    • /
    • 2006
  • Nowadays, technologies such as RFID, sensor network makes our life comfortable more and more. In this paper we propose a wearable computing system for blind and deaf person who can be easily out of sight from our technology. We are making a wearable computing system that is consisted of embedded board to processing data, ultrasonic sensors to get distance data and motors that make vibration as a signal to see the screen for a deaf person. This system offers environmental informations by text and voice. For example, distance data from a obstacle to a person are calculated by data compounding module using sensed ultrasonic reflection time. This data is converted to text or voice by main processing module, and are serviced to a handicapped person. Furthermore we will extend this system using a voice recognition module and text to voice convertor module to help communication among the blind and deaf persons.

  • PDF

엣지 디바이스에서의 병렬 프로그래밍 모델 성능 비교 연구 (A Performance Comparison of Parallel Programming Models on Edge Devices)

  • 남덕윤
    • 대한임베디드공학회논문지
    • /
    • 제18권4호
    • /
    • pp.165-172
    • /
    • 2023
  • Heterogeneous computing is a technology that utilizes different types of processors to perform parallel processing. It maximizes task processing and energy efficiency by leveraging various computing resources such as CPUs, GPUs, and FPGAs. On the other hand, edge computing has developed with IoT and 5G technologies. It is a distributed computing that utilizes computing resources close to clients, thereby offloading the central server. It has evolved to intelligent edge computing combined with artificial intelligence. Intelligent edge computing enables total data processing, such as context awareness, prediction, control, and simple processing for the data collected on the edge. If heterogeneous computing can be successfully applied in the edge, it is expected to maximize job processing efficiency while minimizing dependence on the central server. In this paper, experiments were conducted to verify the feasibility of various parallel programming models on high-end and low-end edge devices by using benchmark applications. We analyzed the performance of five parallel programming models on the Raspberry Pi 4 and Jetson Orin Nano as low-end and high-end devices, respectively. In the experiment, OpenACC showed the best performance on the low-end edge device and OpenSYCL on the high-end device due to the stability and optimization of system libraries.

유비쿼터스 컴퓨팅 환경에서의 스트림 암호 설계 고찰 (A Study on the Design Concept of Stream Cipher Algorithm in Ubiquitous Computing)

  • 김화영;김은홍
    • 한국IT서비스학회지
    • /
    • 제3권1호
    • /
    • pp.101-115
    • /
    • 2004
  • The phrase "Ubiquitous Computing" has become popular ever since Mark Weiser used it in an article. It is to realize a computerized environment in which small computers are embedded and cooperate with each other. This environment will support many activities of our daily life. In a Ubiquitous Computing environment, various devices will be connected to the network from houses and buildings. Therefore it is necessary to ensure network security and to protect private data from tapping, falsification and the disguising of identity by others. This study reviews the Ubiquitous Computing technologies in detail and outlines the design concept of the Stream Cipher Algorithm.

OpenCL을 이용한 임베디드 GPGPU환경에서의 AES 암호화 성능 개선과 평가 (Performance Enhancement and Evaluation of AES Cryptography using OpenCL on Embedded GPGPU)

  • 이민학;강우철
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제22권7호
    • /
    • pp.303-309
    • /
    • 2016
  • 최근, ARM Mali와 같은 여러 임베디드 프로세서들이 OpenCL과 같은 GPGPU 프레임워크를 지원함에 따라 기존 PC 환경에서 활용되던 GPGPU 기술이 임베디드 시스템 영역으로 확대 되고 있다. 그러나 임베디드 시스템은 PC와는 상이한 구조를 갖으며, 저전력이나 실시간성과 같은 성능이 더욱 중요하다. 본 논문에서는 임베디드 GPGPU환경에서 AES 암호화 알고리즘을 개방형 범용 병렬 컴퓨팅 프레임워크인 OpenCL을 사용하여 구현하고 이를 CPU만을 이용한 구현과 비교한다. 실험결과, 1000KByte의 데이터 사이즈의 128비트 AES 암호화 시에 OpenCL을 사용하여 GPU로 병렬 처리하는 것이 OpenMP를 사용하여 CPU상에서 병렬 처리한 방식보다 응답 시간은 최대 1/150, 에너지 소비량은 최대 1/290로 감소함을 확인하였다. 또한 호스트와 GPU 디바이스 간에 메모리를 공유하는 임베디드 구조의 특성에 최적화하여 메모리 복제를 하지 않는 기법을 적용하는 경우 응답시간과 에너지 소비량에서 최대 100% 이상의 추가적인 성능개선을 이룰 수 있었으며, 연구에서 사용한 데이터의 크기에 비례하여 더 높은 성능의 개선이 나타나는 것을 확인하였다.

Decentralized civil structural control using real-time wireless sensing and embedded computing

  • Wang, Yang;Swartz, R. Andrew;Lynch, Jerome P.;Law, Kincho H.;Lu, Kung-Chun;Loh, Chin-Hsiung
    • Smart Structures and Systems
    • /
    • 제3권3호
    • /
    • pp.321-340
    • /
    • 2007
  • Structural control technologies have attracted great interest from the earthquake engineering community over the last few decades as an effective method of reducing undesired structural responses. Traditional structural control systems employ large quantities of cables to connect structural sensors, actuators, and controllers into one integrated system. To reduce the high-costs associated with labor-intensive installations, wireless communication can serve as an alternative real-time communication link between the nodes of a control system. A prototype wireless structural sensing and control system has been physically implemented and its performance verified in large-scale shake table tests. This paper introduces the design of this prototype system and investigates the feasibility of employing decentralized and partially decentralized control strategies to mitigate the challenge of communication latencies associated with wireless sensor networks. Closed-loop feedback control algorithms are embedded within the wireless sensor prototypes allowing them to serve as controllers in the control system. To validate the embedment of control algorithms, a 3-story half-scale steel structure is employed with magnetorheological (MR) dampers installed on each floor. Both numerical simulation and experimental results show that decentralized control solutions can be very effective in attaining the optimal performance of the wireless control system.

Zero-Knowledge Realization of Software-Defined Gateway in Fog Computing

  • Lin, Te-Yuan;Fuh, Chiou-Shann
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권12호
    • /
    • pp.5654-5668
    • /
    • 2018
  • Driven by security and real-time demands of Internet of Things (IoT), the timing of fog computing and edge computing have gradually come into place. Gateways bear more nearby computing, storage, analysis and as an intelligent broker of the whole computing lifecycle in between local devices and the remote cloud. In fog computing, the edge broker requires X-aware capabilities that combines software programmability, stream processing, hardware optimization and various connectivity to deal with such as security, data abstraction, network latency, service classification and workload allocation strategy. The prosperous of Field Programmable Gate Array (FPGA) pushes the possibility of gateway capabilities further landed. In this paper, we propose a software-defined gateway (SDG) scheme for fog computing paradigm termed as Fog Computing Zero-Knowledge Gateway that strengthens data protection and resilience merits designed for industrial internet of things or highly privacy concerned hybrid cloud scenarios. It is a proxy for fog nodes and able to integrate with existing commodity gateways. The contribution is that it converts Privacy-Enhancing Technologies rules into provable statements without knowing original sensitive data and guarantees privacy rules applied to the sensitive data before being propagated while preventing potential leakage threats. Some logical functions can be offloaded to any programmable micro-controller embedded to achieve higher computing efficiency.

Networked Robots using ATLAS Service-Oriented Architecture in the Smart Spaces

  • Helal, Sumi;Bose, Raja;Lim, Shin-Young;Kim, Hyun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권4호
    • /
    • pp.288-298
    • /
    • 2008
  • We introduce new type of networked robot, Ubiquitous Robotic Companion (URC), embedded with ATLAS Service-oriented architecture for enhancing the space sensing capability. URC is a network-based robotic system developed by ETRI. For years of experience in deploying service with ATLAS sensor platform for elder and people with special needs in smart houses, we need networked robots to assist elder people in their successful daily living. Recently, pervasive computing technologies reveals possibilities of networked robots in smart spaces, consist of sensors, actuators and smart devices can collaborate with the other networked robot as a mobile sensing platform, a complex and sophisticated actuator and a human interface. This paper provides our experience in designing and implementing system architecture to integrate URC robots in pervasive computing environments using the University of Florida's ATLAS service-oriented architecture. In this paper, we focus on the integrated framework architecture of URC embedded with ATLAS platform. We show how the integrated URC system is enabled to provide better services which enhance the space sensing of URC in the smart space by applying service-oriented architecture characterized as flexibility in adding or deleting service components of Ubiquitous Robotic Companion.