• Title/Summary/Keyword: Embedded Capacitors

Search Result 63, Processing Time 0.032 seconds

Composite $BaTiO_3$ Embedded capacitors in Multilayer Printed Circuit Board (다층 PCB에서의 $BaTiO_3$ 세라믹 Embedded capacitors)

  • You, Hee-Wook;Park, Yong-Jun;Koh, Jung-Hyuk
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.110-113
    • /
    • 2008
  • Embedded capacitor technology is one of the effective packing technologies for further miniaturization and higher performance of electric packaging system. In this paper, the embedded capacitors were simulated and fabricated in 8-layered printed circuit board employing standard PCB processes. The composites of barium titanante($BaTiO_3$) powder and epoxy resin were employed for the dielectric materials in embedded capacitors. Theoretical considerations regarding the embedded capacitors have been paid to understand the frequency dependent impedance behavior. Frequency dependent impedance of simulated and fabricated embedded capacitors was investigated. Fabricated embedded capacitors have lower self resonance frequency values than that of the simulated embedded capacitors due to the increased parasitic inductance values. Frequency dependent capacitances of fabricated embedded capacitors were well matched with those of simulated embedded capacitors from the 100MHz to 10GHz range. Quality factor of 20 was observed and simulated at 2GHz range in the 10 pF embedded capacitors. Temperature dependent capacitance of fabricated embedded capacitors was presented.

Dielectric Materials for Embedded Capacitors (내장형 축전기용 유전재료)

  • 이호영
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.2
    • /
    • pp.61-67
    • /
    • 2002
  • The number of passive components used in hand held devices and computers continue to increase so that the passive to active ratio continues to grow. Embedded passives are the best technology for very high component density with increased electrical performance. improved reliability, reduced size, weight and lower cost. Specially embedded capacitors are strongly under development. This paper discusses dielectric materials used in embedded capacitors and remained challenges.

  • PDF

Characterization of BTO based MIM Capacitors Embedded into Organic Packaging Substrate (유기 패키징 기판에서의 BTO 기반의 임베디드 MIM 커패시터의 특성 분석)

  • Lee, Seung-J.;Lee, Han-S.;Park, Jae-Y.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1504-1505
    • /
    • 2007
  • In this paper, fully embedded high Dk BTO MIM capacitors have been developed into a multi-layered organic package substrate for low cost RF SOP (System on Package) applications. These embedded MIM capacitors were designed and simulated by using CST 3D EM simulators for finding out optimal geometries and verifying their applicability. The embedded MIM capacitor with a size of $550\;{\times}\;550\;um^2$ has a capacitance of 5.3pF and quality factor of 43 at 1.5 GHz, respectively. The measured performance characteristics were well matched with 3D EM simulated ones. Equivalent circuit parameters of the embedded capacitors were extracted for making a design library.

  • PDF

Design parameters of embedded capacitors (내장형 캐패시터의 설계 파라미터 추출에 관한 연구)

  • 윤희선;유찬세;조현민;이영신;이우성;박종철
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.11a
    • /
    • pp.61-66
    • /
    • 2001
  • In this research, the design parameters of embedded capacitors are extracted by modeling and fabrication. The traditional library of capactor has a few problems in applying the circuit. Its capacitance is discrete, so target values in any circuit often can't be obtained in library, To solve this problem, the characteristics of capacitors are detected in the variation with the shape and structure, and then the capacitors with the expected reactance value at target frequency are obtained, In this procedure, 3-dimensional structure simulation is performed to predict the characteiristics of capacitors.

  • PDF

Capacitance-voltage Characteristics of MOS Capacitors with Ge Nanocrystals Embedded in HfO2 Gate Material

  • Park, Byoung-Jun;Lee, Hye-Ryeong;Cho, Kyoung-Ah;Kim, Sang-Sig
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.8
    • /
    • pp.699-705
    • /
    • 2008
  • Capacitance versus voltage (C-V) characteristics of Ge-nanocrystal (NC)-embedded metal-oxide-semiconductor (MOS) capacitors with $HfO_2$ gate material were investigated in this work. The current versus voltage (I-V) curves obtained from Ge-NC-embedded MOS capacitors fabricated with the $NH_3$ annealed $HfO_2$ gate material reveal the reduction of leakage current, compared with those of MOS capacitors fabricated with the $O_2$ annealed $HfO_2$ gate material. The C-V curves of the Ge-NC-embedded MOS capacitor with $HfO_2$ gate material annealed in $NH_3$ ambient exhibit counterclockwise hysteresis loop of about 3.45 V memory window when bias voltage was varied from -10 to + 10 V. The observed hysteresis loop indicates the presence of charge storages in the Ge NCs caused by the Fowler-Nordheim (F-N) tunneling. In addition, capacitance versus time characteristics of Ge-NC-embedded MOS capacitors with $HfO_2$ gate material were analyzed to investigate their retention property.

Memory Characteristics of MOS Capacitors Embedded with Ge Nanocrystals in $HfO_2$ Layers by Ion Implantation

  • Lee, Hye-Ryoung;Choi, Sam-Jong;Cho, Kyoung-Ah;Kim, Sang-Sig
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.147-148
    • /
    • 2006
  • Ge nanocrystals(NCs)-embedded MOS capacitors are charactenzed in this work using capacitance-voltage measurement. High-k dielectrics $HfO_2$ are employed for the gate material m the MOS capacitors, and the C-V curves obtained from $O_2-$ and $NH_3$-annealed $HfO_2$ films are analyzed.

  • PDF

Electrical Characteristics of Carbon Nanotube Embedded 4H-SiC MOS Capacitors (탄소나노튜브를 첨가한 4H-SiC MOS 캐패시터의 전기적 특성)

  • Lee, Taeseop;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.9
    • /
    • pp.547-550
    • /
    • 2014
  • In this study, the electrical characteristics of the nickel (Ni)/carbon nanotube (CNT)/$SiO_2$ structures were investigated in order to analyze the mechanism of CNT in MOS device structures. We fabricated 4H-SiC MOS capacitors with or without CNTs. CNT was dispersed by isopropyl alcohol. The capacitance-voltage (C-V) and current-voltage (I-V) are characterized. Both devices were measured by Keithley 4200 SCS. The experimental flatband voltage ($V_{FB}$) shift was positive. Near-interface trap charge density ($N_{it}$) and negative oxide trap charge density ($N_{ox}$) value of CNT embedded MOS capacitors was less than that values of reference samples. Also, the leakage current of CNT embedded MOS capacitors is higher than reference samples. It has been found that its oxide quality is related to charge carriers and/or defect states in the interface of MOS capacitors.

Using the 3D EM simulator analyze characteristics of the self resonance frequency of the embedded capacitor (3D EM Simulator를 이용한 Embedded Capacitor의 SRF(Self Resonance Frequency) 특성 분석)

  • You, Hee-Wook;Koo, Sang-Mo;Park, Jae-Yeong;Koh, Jung-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1366-1367
    • /
    • 2006
  • Embedded capacitor technology is one of the effective packaging technologies for further miniaturization and higher performance of electric package systems. So we used the 3D EM simulator for embedded capacitor design in 8-layed PCB(Printed Circuit Board). The designed capacitors value are 2 pF, 5pF, 10 pF, respectly. we investigated characteristics of capacitance - frequency and SRF(Self Resonance Frequency) as changing the rate of hight and width of upper pad of embedded capacitors.

  • PDF

The Properties of $Bi_2Mg_{2/3}Nb_{4/3}O_7$ Thin Films Deposited on Copper Clad Laminates For Embedded Capacitor (임베디드 커패시터의 응용을 위해 CCL 기판 위에 평가된 BMN 박막의 특성)

  • Kim, Hae-Won;Ahn, Jun-Ku;Ahn, Kyeong-Chan;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.45-45
    • /
    • 2007
  • Capacitors among the embedded passive components are most widely studied because they are the major components in terms of size and number and hard to embed compared with resistors and inductors due to the more complicated structure. To fabricate a capacitor-embedded PCB for in-line process, it is essential to adopt a low temperature process (<$200^{\circ}C$). However, high dielectric materials such as ferroelectrics show a low permittivity and a high dielectric loss when they are processed at low temperatures. To solve these contradicting problems, we studied BMN materials as a candidate for dielectric capacitors. processed at PCB-compatible temperatures. The morphologies of BMN thin films were investigated by AFM and SEM equipment. The electric properties (C-F, I-V) of Pt/BMN/Cu/polymer were evaluated using an impedance analysis (HP 4194A) and semiconductor parameter analyzer (HP4156A). $Bi_2Mg_{2/3}Nb_{4/3}O_7$(BMN) thin films deposited on copper clad laminate substrates by sputtering system as a function of Ar/$O_2$ flow rate at room temperature showed smooth surface morphologies having root mean square roughness of approximately 5.0 nm. 200-nm-thick films deposited at RT exhibit a dielectric constant of 40, a capacitance density of approximately $150\;nF/cm^2$, and breakdown voltage above 6 V. The crystallinity of the BMN thin films was studied by TEM and XRD. BMN thin film capacitors are expected to be promising candidates as embedded capacitors for printed circuit board (PCB).

  • PDF

Design and Fabrication of Low Temperature Processed $BaTiO_3$ Embedded Capacitor for Low Cost Organic System-on-Package (SOP) Applications (저가형 유기 SOP 적용을 위한 저온 공정의 $BaTiO_3$ 임베디드 커페시터 설계 및 제작)

  • Lee, Seung-J.;Park, Jae-Y.;Ko, Yeong-J.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1587-1588
    • /
    • 2006
  • Tn this paper, PCB (Printed Circuit Board) embedded $BaTiO_3$ MIM capacitors were designed, fabricated, and characterized for low cost organic SOP applications by using 3-D EM simulator and low temperature processes. Size of electrodes and thickness of high dielectric films are optimized for improving the performance characteristics of the proposed embedded MIM capacitors at high frequency regime. The selected thicknesses of the $BaTiO_3$ film are $12{\mu}m$, $16{\mu}m$, and $20{\mu}m$. The fabricated MIM capacitor with dielectric constant of 30 and thickness of $12{\mu}m$ has capacitance density of $21.5p\;F/mm^2$ at 100MHz, maximum quality factor of 37.4 at 300 MHz, a quality factor of 30.9 at 1GHz, self resonant frequency of 5.4 GHz, respectively. The measured capacitances and quality factors are well matched with 3-D EM simulated ones. These embedded capacitors are promising for SOP based advanced electronic systems with various functionality, low cost, small size and volume.

  • PDF