• Title/Summary/Keyword: Elicitors

Search Result 72, Processing Time 0.031 seconds

Effects of Elicitors on Seedling Growth, Total Polyphenol and Chlorophyll Content and Antioxidant Activity of Barley (Hordeum vulgare L.)

  • Salitxay, Timnoy;Phouthaxay, Phonesavanh;Pang, Yeoun-Gyu;Yeong, Yu-Chi;Adhikari, Prakash Babu;Park, Cheol-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.1
    • /
    • pp.33-40
    • /
    • 2016
  • This study is focused on the evaluation of growth parameters, total polyphenol content (TPC), chlorophyll content as well as the DPPH (1,1-diphenyl-2-picryhydrazyl) free radical scavenging activity of young barley seedling (YBS) affected by elicitation. Salicylic acid (SA), methyl jasmonate (MJ), amino acid liquid fertilizer (ALF) and microbial metabolism activator (MMA) were used. Elicitation was conducted for two times and various concentrations were used in this study. The result revealed that, MJ 1 ml/L treated-YBS gave the longest seedling length of 1.33 cm, followed by the ones treated with SA 1.38 mg/L and ALF 2 ml/L, respectively. ALF 3 ml/L treatment gave the highest fresh weight of 10 seedlings, followed by MJ 5 ml/L and SA 13.8 mg/L treatment with 1.56 g, 1.55 g and 1.53 g respectively. SA 138.12 mg/L elicitor treated-YBS gave the highest Chl a, Chl b content of $8.57{\mu}g/mg$ and $3.83{\mu}g/mg$, respectively while the highest carotenoid content was found in MJ ml/L treatment with $1.62{\mu}g/mg$. Among elicitor treated-YBS, SA showed better TPC. The highest TPC was found in SA 1.38 mg/L treatment with 18.82 mg/g TAE. Likewise, SA 1.38 mg/L showed the highest DPPH free radical scavenging activity among all the treatments. However, the lowest TPC was found in ALF 1ml/L treated-YBS with 9.46 mg/g TAE, which was even lower than the control (14.31 mg/g TAE).

Efficient Elicitation of Ginsenoside Biosynthesis in Cell Cultures of Panax notoginseng by Using Self-chemically-synthesized Jasmonates

  • Wang Wei;Zhao Zhen-Jiang;Xu Yufang;Qian Xu hong;Zhong Jian-Jiang
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.2
    • /
    • pp.162-165
    • /
    • 2005
  • A series of fluorine and hydroxyl containing jasmonate derivatives, which were chemically synthesized in our institute, were investigated for their effects on the biosynthesis and heterogeneity of ginsenosides in suspension cultures of Panax notoginseng cells. Com-pared to the control (without addition of elicitors), $100{\mu}M$ of each of the jasmonate was added on day 4 to the suspension cultures of P. notoginseng cells. It was observed that, jasmonates greatly enhanced the ginsenoside content and the ratio of Rb group to Rg group (i.e. $(Rb_1\;+\;Rd)/(Rg_1\;+\;Re)$ in the P. notoginseng cells. Some of the synthetic jasmonates, such as pentafluoropropyl jasmonate (PFPJA), 2-hydroxyethyl jasmonate (HEJA) and 2-hydroxye-thoxyethyl jasmonate (HEEJA), could promote the ginsenoside content to $2.55\;\pm\;0.11,\;3.65\;\pm\;0.13\;and\;2.94\;\pm\;0.06$mg/100 mg DW, respectively, compared to that of $0.64\;\pm\;0.06$mg/100 mg DW for the control and $2.17\;\pm\;0.04$ mg/100 mg DW by the commercially available methyl jasmonate (MJA); and they could change the respective Rb:Rg ratio to $1.60\;\pm\;0.04,\;1.87\;\pm\;0.01\;and\;1.56\;\pm\;0.05$, compared to that of $0.47\;\pm\;0.01$ for the control and $1.42\;\pm\;0.06$ by MJA. The results suggest that suitable esterification of MJA with fluorine or hydroxyl group could in-crease the elicitation activity to induce plant secondary metabolism. The information obtained from this study is useful for hyper-production of heterogeneous products by plant cell cultures.

Enhancement and Conversion of Ginsenoside Contents in Cultured Wild Ginseng Adventitious Root (산삼 부정배양근의 진세노사이드 함량 증진과 성분 변환)

  • Kim, Chul Joong;Choi, Jae Hoo;Oh, Yeong Seon;Seong, Eun Soo;Lim, Jung Dae;Yu, Chang Yeon;Lee, Jae Geun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.6
    • /
    • pp.445-454
    • /
    • 2020
  • Background: Culturing wild ginseng adventitious root using plant factory technology provides genetic safety and high productivity. This production technology is drawing attention in the fields of functional raw materials and product development. The cultivation method using elicitors is key technology for controlling biomass and increasing secondary metabolites. Methods and Results: Elicitor treatments using methyl jasmonate, pyruvic acid, squalene, β-sistosterol were performed to amplify total ginsenosides (Rb1, Rc, Rb2, Rb3, and Rd) of cultured wild ginseng adventitious root. Thereafter, fermentation and steaming processes were performed to convert total ginsenosides into minor molecular ginsenosides (Rg3, Rk1, and Rg5). The result indicated that methyl jasmonate minimizes the reduction in fresh weight of cultured wild ginseng adventitious root and maximizes total ginsenosides (sum of Rb1, Rc, Rb2, Rb3, and Rd). Ginsenoside conversion results showed a maximum degree of conversion of 131 mg/g. Conclusions: In this study, we demonstrated that the optimal elicitor treatment method increased the content of total ginsenosides, while the steaming and fermentation processing method increased the content of minor ginsenosides.

Defense Inducer Compounds Up-regulated the Peroxidase, Polyphenol Oxidase, and Total Phenol Activities against Spot Blotch Disease of Wheat

  • Puja Kumari;Chandrashekhar Azad;Ravi Ranjan Kumar;Jyoti Kumari;Kumar Aditya;Amarendra Kumar
    • The Plant Pathology Journal
    • /
    • v.39 no.2
    • /
    • pp.159-170
    • /
    • 2023
  • Spot blotch disease of wheat caused by Bipolaris sorokiniana (Sacc.) Shoem is considered as an economically important disease which affects all the growing stages of wheat crop. Therefore, it is important to search some effective management strategies against the spot blotch pathogen. Some synthetic elicitor compounds (salicylic acid, isonicotinic acid, and chitosan) and nano-particles (silver and aluminum) were tested against the pathogen to observe the change in biochemical activity and defense action of wheat plant against spot blotch disease. All the tested elicitor compounds and nano-particles showed a significant increase in activity of peroxidase, polyphenol oxidase (PPO), and total phenol over control. The highest increase in activity of peroxidase was recorded at 72 h from chitosan at 2 mM and 96 h from silver nano-particle at 100 ppm. Maximum PPO and total phenol activity were recorded from chitosan at 2 mM and silver nano-particle at 100 ppm as compared to pathogen-treated and healthy control. The lowest percent disease index, lowest no. of spots/leaf, and no. of infected leaves/plant were found in silver nano-particle at 100 ppm and chitosan at 2 mM, respectively. The use of defense inducer compounds results in significantly up-regulated enzymatic activity and reduced spot blotch disease. Therefore, chitosan and silver nano-particle could be used as alternative methods for the management of spot blotch disease.

Manipulating Isoflavone Levels in Mungbean Sprouts by Chemical Treatment (대사유도물질 처리에 의한 발아녹두의 아이소플라본 생합성 양상)

  • Lee Ji-Hyun;Chung Il-Min;Park Sei-Joon;Kim Wook Han;Kim So-Yeun;Kim Jin-Ae;Jung Soosuk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.6
    • /
    • pp.528-532
    • /
    • 2004
  • We have studied physiological responses of mung bean sprout to the treatment of elicitors. Chemicals such as salicylic acid and methyl jasmonic acid are not only the intermediates found in plant defense system but also could affect plant secondary metabolism. We found that mild treatment of salicylic acid and acetyl salicylic acid (aspirin) increase isoflavone production dramatically in mung bean sprout which has very low level of isoflavones compared with soybean sprout. The isoflavone content in salicylic acid treated- and acetyl salicylic acid treated-mung bean sprout was about 2.3 and 2.2 times higher than that of control, respectively. However, the increasing patterns of isoflavone in cotyledon and hypocotyl and root were not identical. The major increase among isoflavone fractions in cotyledon was led by the increase in malonylglycitin and malonyldaidzin level. Whereas, the increase in hypocotyl and root was led by malonyldaidzin. Methyl jasmonic acid did not show statistically significant increase in mung bean sprout. With this result, we were able to propose the non-transgenic method, which can control the isoflavone production in germinating mung bean.

Characterization and Expression Profile Analysis of a New cDNA Encoding Taxadiene Synthase from Taxus media

  • Kai, Guoyin;Zhao, Lingxia;Zhang, Lei;Li, Zhugang;Guo, Binhui;Zhao, Dongli;Sun, Xiaofen;Miao, Zhiqi;Tang, Kexuan
    • BMB Reports
    • /
    • v.38 no.6
    • /
    • pp.668-675
    • /
    • 2005
  • A full-length cDNA encoding taxadiene synthase (designated as TmTXS), which catalyzes the first committed step in the Taxol biosynthetic pathway, was isolated from young leaves of Taxus media by rapid amplification of cDNA ends (RACE). The full-length cDNA of TmTXS had a 2586 bp open reading frame (ORF) encoding a protein of 862 amino acid residues. The deduced protein had isoelectric point (pI) of 5.32 and a calculated molecular weight of about 98 kDa, similar to previously cloned diterpene cyclases from other Taxus species such as T. brevifolia and T. chinenisis. Sequence comparison analysis showed that TmTXS had high similarity with other members of terpene synthase family of plant origin. Tissue expression pattern analysis revealed that TmTXS expressed strongly in leaves, weak in stems and no expression could be detected in fruits. This is the first report on the mRNA expression profile of genes encoding key enzymes involved in Taxol biosynthetic pathway in different tissues of Taxus plants. Phylogenetic tree analysis showed that TmTXS had closest relationship with taxadiene synthase from T. baccata followed by those from T. chinenisis and T. brevifolia. Expression profiles revealed by RT-PCR under different chemical elicitor treatments such as methyl jasmonate (MJ), silver nitrate (SN) and ammonium ceric sulphate (ACS) were also compared for the first time, and the results revealed that expression of TmTXS was all induced by the tested three treatments and the induction effect by MJ was the strongest, implying that TmTXS was high elicitor responsive.

Purification of a New Elicitin from Phytopthora cambivora KACC40160 (Phytophthora cambivora KACC 40160으로부터 새로운 elicitin의 분리)

  • Yoon, Sang-Hong;Bae, Shin-Chul;Park, In-Cheol;Koo, Bon-Sung;Kim, Young-Hwan;Yeo, Yun-Soo
    • Applied Biological Chemistry
    • /
    • v.46 no.2
    • /
    • pp.79-83
    • /
    • 2003
  • Elicitins, proteinaceous elicitors secreted from Oomycetes fungi (Phytophthora spp. and Pythium spp.), have been known as inducer of hypersensitive response (HR) in incompatible interactions between plant and pathogens. Five elicitins among many Korean Phytophthora species caused the reactions of distal HR in radish, chinese cabbage and some hot pepper cultivars, but not in cucumber and tomato. Because the isolation of elicitin from Phytophthora cambivora hasn't been reported yet, we have purified a cambivorein, a new member of the elicitin family, from the culture filtrate of Phytophtilora cambivora (KACC 40160) by using FPLC (Fast Protein Liquid Chromatography, AKTA) with sepharose S and Sephacryl HR columns. We confirmed that it induces necrosis activities in some hot pepper cultivars and its molecular weight is about 10 KDa by Tricine-SDS-PAGE. Comparison of amino acid sequences of its N-terminal ends also informed the identification of Iysine at the 13th position, which is characteristic of a kind of basic elicitin isoform $({\beta}-isoform)$. It Also showed that our elicitin is not identical with N-terminal sequences of many elicitins reported from Phytophthora spp..

Effects of Chitosan Treatment on Changes of Soyasaponin Contents in Soybean Sprouts (키토산 처리가 콩나물의 Soyasaponin 함량변화에 미치는 효과)

  • Oh, Bong-Yun;Park, Bock-Hee;Ham, Kyung-Sik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.5
    • /
    • pp.584-588
    • /
    • 2007
  • Elicitors are defined as substances that induce defense responses in plants, which include an increased synthesis of secondary metabolites. Saponin, one of the secondary metabolites, has various physiological effects such as anticancer, antioxidant, cholesterol-lowering activities, etc, in human. This study was carried out to find whether a treatment of soybean sprouts with chitosan as an elicitor, increases saponin contents. Saponin contents in soybean sprouts increased by the chitosan treatment during cultivation, reached the peak on the sixth day, and then decreased. A biosynthesis of group B soyasaponin appeared to be regulated differently. The content of soyasaponin I, a member of group B saponin, was the highest in 250 ppm chitosan-treated soybean sprouts, while the contents of soyasaponin II, III and IV were the highest in 1,000 ppm chitosan-treated soybean sprouts. The content of soyasaponin V changed little in soybean sprouts that had been treated with various concentration of chitosan.

Assessment of Rhizosphere Microbial Community Structure in Tomato Plants after Inoculation of Bacillus Species for Inducing Tolerance to Salinity (토마토에 염류 내성을 유도하는 바실러스 균주 처리 후 근권 미생물 군집 구조 연구)

  • Yoo, Sung-Je;Lee, Shin Ae;Weon, Hang-Yeon;Song, Jaekyeong;Sang, Mee Kyung
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.1
    • /
    • pp.49-59
    • /
    • 2021
  • BACKGROUND: Soil salinity causes reduction of crop productivity. Rhizosphere microbes have metabolic capabilities and ability to adaptation of plants to biotic and abiotic stresses. Plant growth-promoting bacteria (PGPB) could play a role as elicitors for inducing tolerance to stresses in plants by affecting resident microorganism in soil. This study was conducted to demonstrate the effect of selected strains on rhizosphere microbial community under salinity stress. METHODS AND RESULTS: The experiments were conducted in tomato plants in pots containing field soil. Bacterial suspension was inoculated into three-week-old tomato plants, one week after inoculation, and -1,000 kPa-balanced salinity stress was imposed. The physiological and biochemical attributes of plant under salt stress were monitored by evaluating pigment, malondialdehyde (MDA), proline, soil pH, electrical conductivity (EC) and ion concentrations. To demonstrate the effect of selected Bacillus strains on rhizosphere microbial community, soil microbial diversity and abundance were evaluated with Illumina MiSeq sequencing, and primer sets of 341F/805R and ITS3/ITS4 were used for bacterial and fungal communities, respectively. As a result, when the bacterial strains were inoculated and then salinity stress was imposed, the inoculation decreases the stress susceptibility including reduction in lipid peroxidation, enhanced pigmentation and proline accumulation which subsequently resulted in better plant growth. However, bacterial inoculations did not affect diversity (observed OTUs, ACE, Chao1 and Shannon) and structure (principle coordinate analysis) of microbial communities under salinity stress. Furthermore, relative abundance in microbial communities had no significant difference between bacterial treated- and untreated-soils under salinity stress. CONCLUSION: Inoculation of Bacillus strains could affect plant responses and soil pH of tomato plants under salinity stress, whereas microbial diversity and abundance had no significant difference by the bacterial treatments. These findings demonstrated that Bacillus strains could alleviate plant's salinity damages by regulating pigments, proline, and MDA contents without significant changes of microbial community in tomato plants, and can be used as effective biostimulators against salinity stress for sustainable agriculture.

Optimization of Betacyanin Production by Red Beet (Beta vulgaris L.) Hairy Root Cultures. (Red Beet의 모상근 배양을 이용한 천연색소인 Betacyanin 생산의 최적화)

  • Kim, Sun-Hee;Kim, Sung-Hoon;Lee, Jo-No;An, Sang-Wook;Kim, Kwang-Soo;Hwnag, Baik;Lee, Hyeong-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.5
    • /
    • pp.435-441
    • /
    • 1998
  • Optimal conditions for the production of natural color, betacyanin were investigated by varying light intensity, C/N ratio, concentrations of phosphate and kinds of elicitors. Batch cultivation was employed to characterize cell growth and betacyanin production of 32 days. The maximum specific growth rate, ${\mu}$$\sub$max/, was 0.3 (1/day) for batch cultivation. The maximum specific production rate, q$\^$max/$\sub$p/, was enhanced 0.11 (mg/g-cell/day) at 3 klux. A light intensity of 3 klux was shown to the best for both cell growth and betacyanin production. The maximum specific production rate was 0.125 (mg/g-cell/day) at 0.242 (1/day), the maximum specific growth rate. The dependence of specific growth rate on the light lintensity is fit to the photoinhibition model. The correlation between ${\mu}$ and q$\sub$p/ showed that the product formation parameters, ${\alpha}$ and ${\beta}$$\sub$p/ were 0.3756 (mg/cell) and 0.001 (mg/g-cell/day), respectively. The betacyanin production was partially cell growth related process, which is different from the production of a typical product in plant cell cultures. In C/N ratio experiment, high carbon concentration, 42.1 (w/w) improved cell growth rate while lower concentration, 31.6 (w/w) increased the betacyanin production rate. The ${\mu}$$\sub$max/ and q$\^$max/$\sub$p/ were 0.26 (1/day) and 0.075 (mg/g-cell/day), respectively. Beta vulgaris L. cells under 1.25 mM phosphate concentration produced 10.15 mg/L betacyanin with 13.46 (g-dry wt./L) of maximum cell density. The production of betacyanin was elongated by adding 0.1 ${\mu}$M of kinetin. This also increased the cell growth. Optimum culture conditions of light intensity, C/N, phosphate concentration were obtained as 5.5 klux, 27 (w/w), 1.25 mM, respectively by the response surface methodology. The maximum cell density, X$\sub$max/, and maximum production, P$\sub$max/, in optimized conditions were 16 (g-dry wt./L), 12.5 (mg/L) which were higher than 8 (g-dry wt./L), 4.48 (mg/L) in normal conditions. The ${\mu}$$\sub$max/ and q$\^$max/$\sub$p/ were 0.376 (1/day) and 0.134 (mg/g-cell/day) at the optimal condition. The overall results may be useful in scaling up hairy root cell culture system for commercial production of betacyanin.

  • PDF