• Title/Summary/Keyword: Elevated $CO_2$

Search Result 485, Processing Time 0.03 seconds

Synthesis of CoFe2O4 Magnetic Nanoparticles by Thermal Decomposition

  • Soundararajan, D.;Kim, Ki Hyeon
    • Journal of Magnetics
    • /
    • v.19 no.1
    • /
    • pp.5-9
    • /
    • 2014
  • The amine functionalized $CoFe_2O_4$ nanoparticles were prepared by thermal decomposition method at reflux temperatures $160^{\circ}C$ and $172^{\circ}C$. The obtained $CoFe_2O_4$ nanoparticles at $160^{\circ}C$ reflux temperature show aggregation free poly-dispersed nanoparticles in 4-15 nm range. In an elevated reflux temperature of $172^{\circ}C$, $CoFe_2O_4$ show aggregated poly-dispersed nanoparticles in the size range of 20-46 nm. The saturation magnetization value at 300 K exhibited 51 emu/g at reflux temperature of $160^{\circ}C$. However, the sample synthesized at an elevated temperature of $172^{\circ}C$ has shown a coercive field value of 560 Oe with saturation magnetization of 68 emu/g.

Studies on Effect of $CO_2$ Concentration in Air and Pb Concentration in Soil on Pillbug Growth and Bio-accumulation (대기 중 $CO_2$ 및 토양 중 Pb 농도 증가가 공벌레의 성장과 공벌레 체내 Pb 축적에 미치는 영향에 관한 연구)

  • Whang, Hwa-Yeon;Lee, Sang-Don
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.6
    • /
    • pp.539-546
    • /
    • 2010
  • In nature, the overall effect of heavy metals on the biota can be influenced by a number of environmental factors like soil characteristics and air pollution by elevated $CO_2$. Pillbugs(Isopoda, Armadillium vulgare) take up heavy metals with their food and store them mainly in the vesicles of hepatopancreas. They accumulate certain metals, occuring in relatively large numbers, are easily collected and identified. Therefore, it has been suggested that total body concentration of metals in pillbugs could be positively correlated to the levels of environmental exposure and that pillbugs could be used as biological indicators of metal pollution and global change by $CO_2$. The aim of the study is to determine effects of heavy metal concentrations in soil and elevated $CO_2$ on pillbugs'body accumulation of heavy metal and growth rate. In this study, pillbugs were collected at five sites (N=287) May 2006. Cu and Zn concentrations in pillbugs were higher than in soils (1.39-41.70 times) than in control. The high bioconcentration of lead in Sangam may be partly associated with reclaimed land uses. Pillbugs in low $CO_2$ and Pb condition showed higher growth rate than in elevated $CO_2$ and Pb condition.

Influence of Elevated $CO_2$ on Denitrifying Bacterial Community in a Wetland Soil (이산화탄소 증가가 습지토양의 탈질세균 군집구조에 미치는 영향)

  • Lee Seung-Hoon;Kim Seonyoung;Kang Hojeong
    • Korean Journal of Microbiology
    • /
    • v.40 no.3
    • /
    • pp.244-247
    • /
    • 2004
  • To investigate the effects of elevated $CO_2$ on the denitrifying bacterial community structure in a wetland soil, dynamics of bacterial community structure was explored in an artificial wetland ecosystem with one of three plant species (T. latifolia, S. lacustris, and 1. effusus) under two levels of $CO_2$(370 ppm or 740 ppm) after 110day incubation. For the analysis of bacterial community structure, functional genes such as nitrite reductase genes (nirS) were PCR-amplified followed by cloning of PCR products and screening by restriction fragment length polymorphism (RFLP). nirS gene fragments were amplified in all analyzed soil samples. Species richness estimated by the number of distinct phylotypes were 83 and 95 in the ambient $CO_2$ treatment and the elevated treatment, respectively. Two phylotypes (type 1 and type 2) were dominant in both of the treatments. Elevated $CO_2$ treatment increased species richness of denitrifying as well as changed a large proportion of denitrifier phylotypes compared to those of the ambient treatment. Overall, the data in this study suggested that the denitrifying communities in the wetland soil are diverse and that the richness of denitrifying bacterial community might be affected by elevated $CO_2$ treatment.

Effect of Elevated CO2 Concentration and Temperature on the Growth and Ecophysiological Responses of Ginseng (Panax ginseng C. A. Meyer) (CO2농도와 온도증가에 따른 인삼의 생육 및 생리.생태학적 반응 연구)

  • Lee, Kyoung-Mi;Kim, Hae-Ran;Lim, Hoon;You, Young-Han
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.2
    • /
    • pp.106-112
    • /
    • 2012
  • In order to understand the growth and ecophy -siological response of ginseng to global warming condition, we cultivated one and two year ginseng seedlings in control (ambient $CO_2$ + ambient temperature) and global warming treatment (elevated $CO_2$ + elevated temperature) from March 2010 to July 2011. Shoot appearance and initiation of flowering were advanced by 3-4 days in global warming treatment than in control. However, timing of fruit setting and seed ripeness was similar in both control and global warming treatment. Shoot length was longer in global warming treatment than in control, and also the number of leaves was much in global warming treatment. Fresh root weight was not different between control and global warming treatment. Photosynthetic rate was higher in global warming treatment than at control. Photosynthetic rate and transpiration rate were higher in two year seedlings than in one year seedlings at control, but was not different between seedling age of ginseng in global warming treatment. Water use efficiency was higher in one year seedlings than two year seedlings at control and global warming treatment. These results demonstrated that Korean ginseng more or less positively responds to global warming situation.

Effects of Pb and CO2 on the Growth of Pinus densiflora Seedlings (소나무(Pinus densiflora) 묘목의 생장에 미치는 납과 CO2의 영향)

  • Kim, Sung-Hyun;Hong, Sun-Hwa;Kang, Ho-Jeong;Ryu, Hee-Wook;Lee, Sang-Don;Cho, Kyung-Suk;Lee, In-Sook
    • Journal of Ecology and Environment
    • /
    • v.29 no.6
    • /
    • pp.559-563
    • /
    • 2006
  • This work was investigated the effects of the elevated $CO_2$ and Pb contamination on the growth of Pinus densiflora. Two-years pine trees were planted in Pb-contaminated soils (500 mg/kg-soil) and uncontaminated soils, and cultivated for 3 months in the growth chamber where $CO_2$ concentration was controlled at 380 or 760 ppmv. The growth of P. densiflora were comparatively analyzed in 4 kinds of soil samples (CA : $CO_2$ 380 ppmv + Pb 0 mg/kg, CB : $CO_2$ 380 ppmv + Pb 500 mg/kg, EA : $CO_2$ 760 PPmv + Pb 0 mg/kg, EB : $CO_2$ 760 ppmv + Pb 500 mg/kg). It was measured the growth changes of the p. densiflora caused by $CO_2$ concentration and Pb contamination. The growth of P. densiflora was remarkably inhibited in the Pb-contaminated soil, although the biomass and the root elongations were not significantly affected by the elevated $CO_2$. These results suggested that the growth of p. densiflora was sensitively influenced by Pb contamination rather than $CO_2$ concentration. Compared to the initial soil, total Pb concentration in the soil samples was decreased at 760 ppmv $CO_2$ as well as at 380 ppmv $CO_2$ after 3 months. The accumulation of Pb in the roots at 760 ppmv $CO_2$ was two-fold of that at 380 ppmv $CO_2$, indicating that Pb bioavailability in the root of p. densiflora might be affected by the elevated $CO_2$.

Influence of Global Climatic Changes on Wetland Biogeochemical Processes (습지의 생지화학적 반응과 전지구적 기후 변화의 영향)

  • Kang Hojeong
    • 한국생물공학회:학술대회논문집
    • /
    • 2004.07a
    • /
    • pp.35-45
    • /
    • 2004
  • This paper reviewed effects of global climatic changes on wetland biogeochemistry, Wetlands play key roles in global as well as local material cycle, which includes carbon sequestration, $CH_4$ emission and DOC leaching, Increased air temperature, elevated $CO_2$ levels and changed precipitation patterns are believed to affect those processes substantially by modifying oxygen supply, carbon sources, and decomposition rates. For example, elevated $CO_2$ may increase $CH_4$ emission as well as DOC leaching from wetlands. In addition, interactions of multiple effects warrant further investigation.

  • PDF

Variation of Ecological Niche of Quercus serrata under Elevated $CO_2$ Concentration and Temperature ($CO_2$ 농도 및 온도 상승에 의한 졸참나무의 생태적 지위 변화)

  • Cho, Kyu-Tae;Jeong, Heon-Mo;Han, Young-Sub;Lee, Seung-Hyuk
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.2
    • /
    • pp.95-101
    • /
    • 2014
  • In order to investigate effects of elevated $CO_2$ concentration and temperature on the ecological niche of Quercus serrata in Korea. We divided experimental condition in the greenhouse that are control (ambient condition) and treatment with elevated $CO_2$ (approximately 1.6 above than control) and increased air temperature (approximately $2.2^{\circ}C$ above than control). We measured twenty kind characters of seedlings and calculated the ecological niche breadth. As a result, the ecological niche breadth, treatment was widened in the light gradient than the control, was narrowed in the moisture and nutrient gradient. This is may be predicted when the global warming progress, Q. serrata is increases resistance to light environment, and decrease resistance to moisture and nutrient environment. According to the principal component analysis (PCA), control and treatment were arranged based on factor 1 and 2 in each environment gradients. Ecological response is involved variety characters. Among them, indicating that Characters of production is involved in many a parts.

Effects of Global Warming and Environmental Factors of Light, Soil Moisture, and Nutrient Level on Ecological Niche of Quercus acutissima and Quercus variabilis (지구온난화와 환경요소인 광, 토양수분, 영양소가 상수리나무와 굴참나무의 생태 지위에 미치는 영향)

  • Cho, Kyu-Tae;Jang, Rae-Ha;Lee, Seung-Hyuk;Han, Young-Sub;You, Young-Han
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.429-439
    • /
    • 2013
  • This study was conducted to determine the changes of the ecological niche breadth and niche overlap of Quercus acutissima and Quercus variabilis under elevated $CO_2$ concentrations and under elevated temperature conditions. We investigated the growth responses by environmental factor, $CO_2$ concentration, air temperature, light, soil moisture and nutrients. Rising $CO_2$ concentration was treated with 1.6 times than control (ambient) and increased temperature with $2.2^{\circ}C$ above the control (ambient) in the glass greenhouse. Ecological niche breadth and niche overlap was calculated the two oak species (Q. acutissima and Q. variabilis), which were cultivated with light, soil moisture and nutrient gradients at four levels. As a result, the ecological niche breadth of Quercus acutissima was determined to be increased under the warming treatment, but decreased under soil moisture and nutrient environments. The ecological niche breadth of Quercus variabilis was increased under light, soil moisture and nutrients of the warming treatment than control. Ecological niche overlap between Quercus acutissima-Quercus variabilis was increased under light of the warming treatment than control, but decreased under soil moisture and nutrient environments. These results means that two oak species are more severe competition in light environments than soil moisture and nutrient environments. According to analyses of the Cluster and PCA, the two oak species were more sensitive react under light environment than to elevated $CO_2$ concentration or elevated temperature.

Effect of elevated atmospheric carbon dioxide on the allelopathic potential of common ragweed

  • Bae, Jichul;Byun, Chaeho;Ahn, Yun Gyong;Choi, Jung Hyun;Lee, Dowon;Kang, Hojeong
    • Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.212-218
    • /
    • 2019
  • Background: Allelopathy has been suggested as one potential mechanism facilitating the successful colonisation and expansion of invasive plants. The impacts of the ongoing elevation in atmospheric carbon dioxide (CO2) on the production of allelochemicals by invasive species are of great importance because they play a potential role in promoting biological invasion at the global scale. Common ragweed (Ambrosia artemisiifolia var. elatior), one of the most notorious invasive exotic plant species, was used to assess changes in foliar mono- and sesquiterpene production in response to CO2 elevation (389.12 ± 2.55 vs. 802.08 ± 2.69 ppm). Results: The plant growth of common ragweed significantly increased in elevated CO2. The major monoterpenes in the essential oil extracted from common ragweed leaves were β-myrcene, DL-limonene and 1,3,6-octatriene, and the major sesquiterpenes were β-caryophyllene and germacrene-D. The concentrations of 1,3,6-octatriene (258%) and β-caryophyllene (421%) significantly increased with CO2 elevation. Conclusions: These findings improve our understanding of how allelochemicals in common ragweed respond to CO2 elevation.

Growth response and Variation of ecological niche breadth of Hibiscus hamabo, the endangered plant, according to Light, Moisture and Nutrient under elevated CO2 concentration and temperature (CO2농도 상승과 온도 상승조건에서 광, 수분, 유기물구배에 따른 멸종위기식물인 황근(Hibiscus hamabo)의 생육과 생태적 지위폭의 변화)

  • Lee, Soo-In;Lee, Eung-Pill;Kim, Eui-Ju;Park, Jae-Hoon;Cho, Kyu-Tae;Lee, Seung-Yeon;You, Young-Han
    • Korean Journal of Environment and Ecology
    • /
    • v.31 no.3
    • /
    • pp.279-286
    • /
    • 2017
  • We investigated growth response and variation of ecological niche breadth of Hibiscus hamabo according to light, moisture and nutrient when global warming is proceeded by elevated $CO_2$ concentration and temperature. H. hamabo was cultivated in experimental condition in the greenhouse that are divided by control(ambient condition) and treatment(elevated $CO_2$ concentration and temperature). Light, moisture and nutrient gradients were treated within the control and the treatment. Although H. hamabo prefers higher light intensity(up to L3) to lowers', Hamabo mallow doesn't like excessive light intensity($787{\pm}77.76{\mu}mol\;m^{-2}s^{-1}$). Also, H. hamabo was difficult to grow in absent nutrient(0%) and excessive nutrient(20%). However, there was no trend with moisture gradients. The death rate of H. hamabo in the treatment was higher in all gradients except for the highest light intensity condition than control. It means that range of tolerance about light is narrowed when concentration of $CO_2$ gas and temperature is elevated. There was no trend of death rate according to moisture gradient, comparing between control and treatment. The death rate in all nutrient gradients within the treatment is lower than the controls'. It means that range of tolerance about nutrient is widened. The ecological niche breadth of H. hamabo in the treatment was narrower as 30.1% in light gradients but wider as 8.6% in moisture gradients and 30% in nutrient gradients than in the control. In the conclusion, when global warming is proceeded by elevated $CO_2$ concentration and temperature, growth of H. hamabo would be restricted by light intensity.