Browse > Article
http://dx.doi.org/10.4283/JMAG.2014.19.1.005

Synthesis of CoFe2O4 Magnetic Nanoparticles by Thermal Decomposition  

Soundararajan, D. (Department of Physics, Yeungnam University)
Kim, Ki Hyeon (Department of Physics, Yeungnam University)
Publication Information
Abstract
The amine functionalized $CoFe_2O_4$ nanoparticles were prepared by thermal decomposition method at reflux temperatures $160^{\circ}C$ and $172^{\circ}C$. The obtained $CoFe_2O_4$ nanoparticles at $160^{\circ}C$ reflux temperature show aggregation free poly-dispersed nanoparticles in 4-15 nm range. In an elevated reflux temperature of $172^{\circ}C$, $CoFe_2O_4$ show aggregated poly-dispersed nanoparticles in the size range of 20-46 nm. The saturation magnetization value at 300 K exhibited 51 emu/g at reflux temperature of $160^{\circ}C$. However, the sample synthesized at an elevated temperature of $172^{\circ}C$ has shown a coercive field value of 560 Oe with saturation magnetization of 68 emu/g.
Keywords
$CoFe_2O_4$ nanoparticles; thermal decomposition; superparamagnetic;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 T. E. Quickel, V. H. Le, T. Brezesinski, and S. H. Tolbert, Thin Films. 10, 2982 (2010).
2 G. Srinivasan, E. T. Rasmussen, and R. Hayes, Phys. Rev. B. 67, 014418 (2003).   DOI   ScienceOn
3 P. Jeppson, R. Sailer, E. Jarabek, J. Sandstrom, B. Anderson, M. Bremer, D. G. Grier, D. L. Schulz, and A. N. Caruso, J. Appl. Phys. 100, 114324 (2006).   DOI   ScienceOn
4 H. Zeng, C. T. Black, R. L. Sandstrom, P. M. Rice, C. B. Murray, and S. Sun, Phys. Rev. B. 73, 020402[R] (2006).
5 G. Baldi, G. Lorenzi, and C. Ravagli, Processing and Application of Ceramics 3, 103 (2009).   DOI
6 H. F. Yu and A. M. Gadalla, J. Mater. Res. 11, 663 (1996).   DOI
7 Li Xi, Zhen Wang, Yalu Zuo, and Xiaoning Shi, Nanotechnology 22, 045707 (2011).   DOI   ScienceOn
8 Conroy Sun, Jerry S. H. Lee, and Miqin Zhang, Adv. Drug Deliv. Rev. 60, 1252 (2008).   DOI   ScienceOn
9 K. Sinko, E. Manek, A. Meiszterics, K. Havancsak, U. Vainio, and H. Peterlik, J. Nanopart. Res. 14, 894 (2012).   DOI
10 J. S. Jiang, X. L. Yang, and L. S. Gao, Nanostruct. Mater. 12, 143 (1999).   DOI   ScienceOn
11 A. L. Gurgel, J. M. Soares, D. S. Chaves, D. S. Chaves, M. M. Xavier, M. A. Morales, and E. M. Baggio-Saitovitch, J. App. Phys. 107, 09A746 (2010).   DOI
12 P. Vlazan and M. Vasile, Optoelect. Adv. Mater. 4, 1307 (2010).
13 Y. Liu, Y. Zhang, J. D. Feng, C. F. Li, J. Shi, and R. Xiong, J. Exp. Nanosci. 4, 159 (2009)   DOI   ScienceOn
14 N. Dix, V. Skumryev, V. Laukhin, L. Fabrega, F. Sanchez, and J. Fontcubert, Mat. Sci and Eng. B. 144, 127 (2007).   DOI   ScienceOn
15 B. X. Gao, L. Liu, B. Birajdar, M. Ziese, W. Lee, M. Alexe, and D. Hesse, Adv. Mater. 19, 3450 (2009).
16 Z. Wang, X. Liu, M. Lv, P. Chai, Y. Liu, X. Zhou, and J. Men, J. Phys. Chem. C. 112, 15171 (2008).   DOI   ScienceOn
17 N. C. Pramanik, T. S. Fujii, M. Nakanishi, and J. Takada, J. Mater. Sci. 40, 4169 (2005).   DOI
18 Chao Liu, Adam J. Rondinone, and Z. John Zhang, Pure Appl. Chem. 72, 37 (2000).
19 D. Soundararajana, D. Mangalaraj, D. Nataraj, L. Dorosinskii, and K. H. Kim, Mat. Lett. 87, 113 (2012).   DOI   ScienceOn
20 C. Vazquez-Vazquez, M. A. Lopez-Quintela, M. C. Bujan-Nunez, and J. Rivas, J. Nanopart. Res. 13, 1663 (2011).   DOI
21 M. R. Anantharaman, S. Jagatheesan, K. A. Malini, S. Sindhu, A. Narayanasamy, C. N. Chinnasamy, J. P. Jacobs, S. Reijne, K. Seshan, R. H. H. Smits, and H. H. Brongersma, J. Magn. Magn. Mater. 189, 83 (1998).   DOI   ScienceOn
22 D. Soundararajan, J. H. Park, K. H. Kim, and J. M. Ko, Curr. Appl. Phys. 12, 854 (2012).   DOI   ScienceOn
23 B. E. Kashevsky, V. E. Agabekov, S. B. Kashevsky, K. A. Kekalo, E. Y. Manina, I. V. Prokhorov, and V. S. Ulashchik, Particuology 6, 322 (2008).   DOI   ScienceOn
24 V. Pillai and D. O. Shah, J. Magn. Magn. Mater. 163, 243 (1996).   DOI   ScienceOn
25 H. Nathani, S. Gubbala, and R. D. K. Misra, Mat. Sci. Eng. B. 121, 126 (2005).   DOI   ScienceOn