• Title/Summary/Keyword: Element inverse

Search Result 361, Processing Time 0.027 seconds

On the Description of Constrained Static Behavior of Continuous System

  • Eun, Hee-Chang;Lee, Min-Su;Bae, Chung-Yeol
    • Architectural research
    • /
    • v.9 no.1
    • /
    • pp.39-45
    • /
    • 2007
  • The static behavior of continuous system is described by the elastic curve method or is approximately analyzed by a finite element method to be modeled as a discrete system. If a continuous system is constrained by linear constraints which restrict its static behavior, its behavior can be approximately described by the finite element method. It is not easy to describe the constrained behavior by continuous coordinate system. Starting from the generalized inverse method provided by Eun, Lee and Chung, this study is to expand the equation to the continuous systems, to perform the structural analysis of the beam under a uniform loading with interior spring supports, and to investigate the validity of the proposed method through applications.

Identification of Structural Parameters from Frequency Response Functions (주파수 응답함수를 이용한 구조 파라메터 예측)

  • Kim, Kyu-Sik;Kang, Yeon-June
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.863-869
    • /
    • 2007
  • An improved method based on a normal frequency response function (FRF) is proposed to identify structural parameters such as mass, stiffness and damping matrices directly from the FRFs of a linear mechanical system. The method for estimating structural parameters directly from the measured FRFs of a structure is presented. This paper demonstrates that the characteristic matrices are extracted more accurately by using a weighted equation and eliminating the matrix inverse operation. The method is verified for a four degree-of-freedom lumped parameter system and an eight degree-of-freedom finite element beam. Experimental verification is also performed for a free-free steel beam whose size and physical properties are the same as those of the finite element beam. The results show that the structural parameters, especially the damping matrix, can be estimated more accurately by the proposed method.

  • PDF

Use of a reflective body for the reduction of the microphone movement in the near-field acoustical holography based on the inverse boundary element method (역경계요소소법에 기초한 근접음장 음향홀로그래피에서 마이크로폰 이동 저감을 위한 반사체 이용)

  • Kim, Sung-Il;Jeong, Ji-Hoon;Ih, Jeong-Guon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.510-514
    • /
    • 2006
  • 역경계요소법에 기초한 근접음장 음향홀로그래피는 근접 음장에서의 음압 측정과 음향경계요소법을 이용한 전달함수를 이용하여 소음원의 특성을 재구성하고, 임의 형상의을 갖는 소음원을 재구성 할 수 있는 강점이 있지만, 음압 측정에 많은 마이크로폰이 필요로 한다. 많은 실험 비용을 줄이기 위해, 본 연구에서는 마이크로폰이 고정된 상태에서 반사체를 추가하여 음장을 변화시키고, 이 상태에서 측정된 음압을 음원 재구성의 추가 정보로 이용하는 방법이 제안되고, 적용예제로서 모터의 표면 속도를 재구성 하였다. 직육면체 강체 반사체를 이용하여, 각 마이크로폰 위치에서 2 배수의 음압을 얻어, 이를 재구성에 이용하였다. 또한 수치유효랭크를 이용하여 재구성에 사용된 모우드의 개수를 계산하였다.

  • PDF

A study for the- reconstruction of free field sound source from the measured data in a closed wall by using Boundary Element Method (경계요소법을 이용한 음원의 자유음장 복원에 대한 연구)

  • Choi, Han-Lim;Lee, Duck-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1747-1751
    • /
    • 2000
  • It is well known that acoustic signals, even measured in an anechoic chamber, can be contaminated due to the wall interference. Therefore, it is necessary to reconstruct the original signal from the measured data, which is very critical for the case of measurement of source signal in a water tunnel. In this thesis, new methods for the reconstruction of sound sources are proposed and validated by using Boundary Element Method from measured data in a closed space. The inverse Helmholtz integral equation and its normal derivative are used for the reconstruction of sound sources in a closed space. An arbitrary Kirchhoff surface over the sources is proposed to solve the surface information instead of direct solution for the source. Although sound sources are not directly known by the inverse Helmholtz equation, the original sound source of pressure-field outside of the wall can be indirectly obtained by using this new method.

  • PDF

Design of Porcess Parameters in Axisymmetric Multi-step Deep Drawing by a Finite Element Inverse Method (유한요소 역 해석을 이용한 축대칭 다단계 박판성형에서의 공정변수 설계에 관한 연구)

  • Cho, Cheon-Soo;Lee, Choong-Ho;Huh, Hoon
    • Transactions of Materials Processing
    • /
    • v.6 no.4
    • /
    • pp.300-310
    • /
    • 1997
  • A finite element inverse method is introduced for direct prediction of blank shapes, strain distributions, and reliable intermediate shapes from desired final shapes in axisymmetric multi-step deep drawing processes. This mothod enables the determination of process disign. The approach deals with the Hencky's deformation theory. Hill's second order yield criterion, simplified boundary conditions, and minimization of plastic work with constraints. The algorithm developed is applied to motor case forming, and cylindrical cup drawing with the large limit drawing ratio so that it confirms its validity by demonstrating resonably accurate numerical results of each problem. Numerical examples reveal the reason of difficulties in motor case forming with corresponding limit diagrams.

  • PDF

A HYBRID ITERATIVE METHOD OF SOLUTION FOR MIXED EQUILIBRIUM AND OPTIMIZATION PROBLEMS

  • Zhang, Lijuan;Chen, Jun-Min
    • East Asian mathematical journal
    • /
    • v.26 no.1
    • /
    • pp.25-38
    • /
    • 2010
  • In this paper, we introduce a hybrid iterative method for finding a common element of the set of solutions of a mixed equilibrium problem, the set of common mixed points of finitely many nonexpansive mappings and the set of solutions of the variational inequality for an inverse strongly monotone mapping in a Hilbert space. We show that the iterative sequences converge strongly to a common element of the three sets. The results extended and improved the corresponding results of L.-C.Ceng and J.-C.Yao.

A Study on the Determination of Material Property by Cylinder Compression Test (원기둥 압축 시험을 통한 소재의 물성치 평가에 관한 연구)

  • Cha, Do-Sung;Choi, Hong-Seok;Kim, Nak-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.9 s.252
    • /
    • pp.1049-1061
    • /
    • 2006
  • In the study, the flow stress of material and friction condition were determined by using the cylinder compression test and numerical method. We proposed the flow stress equation including the initial yield strength to predict it from the upper bound method. The upper bound technique uses the velocity field which includes two unknowns to effectively express bulging. Also, inverse engineering technique uses the object function to minimize area enclosed by load-stroke curve. The friction factor is determined from the radius of curvature of the barrel by cylinder compression test. Flow stress and initial yield strength predicted from the above techniques are verified through the finite element simulation.

Numerical Study on Sheet Metal Forming Analysis Using the One-Step Forming (One-Step Forming을 이용한 박판성형 해석에 관한 연구)

  • Ahn H. G.;Ko H. H.;Lee C. H.;Ahn B. I.;Moon W. S.;Jung D. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.419-422
    • /
    • 2005
  • Many process parameters have an effect on the auto-body panel forming process. A well-designed blank shape causes the material to flow smoothly, reduces the punch and yields a product with uniform thickness distribution. Therefore, the determination of an initial blank shape plays the important role of saving time and cost in the auto-body panel forming process. For these reasons, some approaches to estimate the initial blank shape have been implemented in this paper, the one-step approach by using a finite element inverse method will be introduced to predict the initial blank shape the developed program is applied to auto-body panel forming.

  • PDF

Performance assessment using the inverse analysis based a function approach of bridges repaired by ACM from incomplete dynamic data (불완전 동적 데이터로부터 복합신소재로 보강된 교량의 함수기반 역해석에 의한 성능 평가)

  • Lee, Sang-Youl;Noh, Myung-Hyun
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.2
    • /
    • pp.51-58
    • /
    • 2010
  • This work examines the identification of stiffness reduction in damaged reinforced concrete bridges under moving loads, and carries out the performance assessment after repairing using advanced composite materials. In particular, the change of stiffness in each element before and after repairing, based on the Microgenetic algorithm as an advanced inverse analysis, is described and discussed by using a modified bivariate Gaussian distribution function. The proposed method in the study is more feasible than the conventional element-based method from computation efficiency point of view. The validity of the technique is numerically verified using a set of dynamic data obtained from a simulation of the actual bridge modeled with a three-dimensional solid element. The numerical examples show that the proposed technique is a feasible and practical method which can inspect the complex distribution of deteriorated stiffness although there is a difference between actual bridge and numerical model as well as uncertain noise occurred in the measured data.

  • PDF

Estimation of Elastic Plastic Behavior Fracture Toughness Under Hydrogen Condition of Inconel 617 from Small Punch Test (Inconel 617 재료의 소형펀치 실험을 이용한 수소취화처리재의 탄-소성 거동 및 파괴인성 유추)

  • Kim, Nak Hyun;Kim, Yun Jae;Yoon, Kee Bong;Ma, Young Hwa
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.753-760
    • /
    • 2013
  • The hydrogen embrittlement of metallic materials is an important issue from the viewpoint of structural integrity. In this regard, the estimation of mechanical properties and fracture toughness under hydrogen conditions provides very important data. This study provides an experimental validation of the approach for simulating the small punch of Inconel 617 using finite element damage analysis, as recently proposed by the authors, and applies an inverse method for the determination of the constitutive tensile behavior of materials. The mechanical properties obtained from the inverse method are compared with those obtained from the tensile test and validated. The mechanical properties and fracture toughness are predicted by using the inverse method and finite element damage analysis.