• Title/Summary/Keyword: Electrostatic discharge

Search Result 262, Processing Time 0.035 seconds

Evaluation of Particle Collection Efficiency in a Wet Electrostatic Precipitator Using an Electrosprayed Discharge Electrode (정전분무 방전극을 이용한 습식 전기집진장치의 미세먼지 집진효율 평가)

  • Kim, Hong-Jik;Kim, Jong-Hyeon;Kim, Jong-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.6
    • /
    • pp.530-537
    • /
    • 2015
  • The wet electrostatic precipitator (wet ESP) is an effective control device which removes submicron particles reentrained in a collection plate and water soluble gas. However, its collection efficiency decreases, as its operation is subject to water-induced distortion of the collection electrode. In order to make up for the limitation, we modified the wet ESP system by installing electrosprayed discharge electrodes. The modified wet ESP system can wash both the collection plate and discharge electrode. As a result, we were able to fabricate a compact wet ESP with a small specific collecting area ($0.18m^2(m^3/min)$) that can accomplish a high collection efficiency of fine particles (97.1%). In addition, the device obtained a relatively low specific corona power of approximately $10W/(m^3/min)$.

Hazard Evaluation of Minimum Ignition Energy by Electrostatic Voltage in Suspended Dust Particles (부유 분진의 정전압에 의한 최소착화에너지 위험성평가)

  • Han, Oue-Sup
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.359-365
    • /
    • 2021
  • We investigated experimentally the ignition characteristic of dust and the hazard evaluating for electrostatic discharge. The ignition energy experiments were performed on sample dusts such as PE(HD), PE(LD), PMMA using the MIKE-3 apparatus. The formation of flame during the ignition of PE(HD) dust clouds occurred after the delay time of about 8 ms, and the flame kernels were not observed in center of ignition occurrence area. The voltage increased with increasing the number of dust dispersions and the increase rate of measured voltage with dust concentration was the highest in the order of PMMA, PE(LD) and PE(HD). For the effect of dispersion condition on the voltage in PE(HD) dust, the results were obtained that the voltage increased as the number of dispersions increased and as the concentration increased under the same dispersion number. The safety voltages to prevent fire and explosions by electrostatic ignition were estimated that PE(HD), PE(LD)-1, PE(LD)-2, and PMMA were 2.58, 44.72, 25.82, and 8.16 kV, respectively. We proposed the method for estimating the minimum ignition energy by using the measured voltage data for efficient investigation of electrostatic ignition hazard.

Ignition Ability of Flammable Materials by Human Body's Electrostatic Discharge by Type of Fabric (옷감 종류별 인체대전 정전기 방전에 의한 인화성물질 점화능력)

  • Jong Soo Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.2
    • /
    • pp.1-8
    • /
    • 2024
  • Unwanted effects of electrostatic phenomena occur in various industries. Electrostatic problems originating from the human body in flammable atmospheres in the industry are especially concerning. A substantial volume of experimental data on the electrostatic charging voltages created on the human body owing to the rubbing of apparel were generated and reviewed during this study. The data were reviewed to determine whether the resultant charging levels of the human body are hazardous in flammable atmospheres. This study was conducted under several conditions, such as different fiber types used in apparel, shoe types, and relative humidities (RHs). The following conclusions were drawn in this study. ① The electrostatic charging levels of the human body owing to the rubbing of apparel increase with the increase in the surface resistances of apparel; however, the electrostatic charging levels may be different depending on the condition of the cloth surface. ② The discharging energy of 1.98-18.5 [mJ] from the human body exceeds the minimum ignition energy of most flammable materials, when removing an overcoat made of polyester, cotton and wool under severe conditions such as wearing height-raising shoes for men. ③ When removing antistatic apparel, the maximum discharging energy of 0.128 mJ from the human body is dangerous if the minimum ignition energy of the flammable material is between 10-5-10-4 [J] Grade; however, a minimum ignition energy of 10-3 J Grade of the flammable material is considered safe. ④ While wearing antistatic shoes, the electrostatic charging voltage generated in the human body when removing an overcoat is 30 V; therefore, wearing such shoes is a suitable countermeasure when handling flammable materials. However, the antistatic abilities of shoes reduce when thick socks are worn. ⑤ As RH increases, the electrostatic charging levels of the human body decrease. ⑥ The electrostatic charging levels of the human body from removing a cotton overcoat can ignite the majority of flammable materials when RH is less than 30% under severe conditions such as wearing height-raising shoes for men.

An Experimental Study for Designing Electrostatic Precipitator: Focused on Collection Efficiency Variation per Area and corona Power

  • Kim, Jong-Ho;Cho, Yong-Kyun;Bong, Choon-Keun;Yun, Joong-Sup;Kim, Shin-Do
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.E2
    • /
    • pp.79-84
    • /
    • 2000
  • The Electrostatic Precipitator is one of the most favorable device of particulate control systems because of the relatively higher collection efficiency and easier operation/maintenance. However, it requires very high initial coat especially for discharging electrodes and collecting plates. In dealing with such problems, development of optimum design can be one of the solutions. In this study, a bench-scale electrostatic precipitator was operated in terms of collection area and corona power, and its performances were analyzed focusing on collection efficiency. A result of this study, a more advanced approach for designing cost-effective precipitator by promoting corona power at a minimized collection area was proposed.

  • PDF

Numerical Investigation on Capture of Sub-Micron particles in Electrostatic Precipitator without Corona Discharger (코로나 방전기가 없는 전기집진기의 미세입자 집진에 관한 수치해석)

  • Lee, Jin-Woon;Jang, Jae-Sung;Lee, Seong-Hyuk
    • Journal of ILASS-Korea
    • /
    • v.16 no.2
    • /
    • pp.69-75
    • /
    • 2011
  • This article presents computational fluid dynamics (CFD) simulations of sub-micron particle movements and flow characteristics in laboratory-scale electrostatic precipitator (ESP) without corona discharge, and for simulation, it uses the commercial CFD program (CFD-ACE) including electrostatic theory and Lagrangian-based equation for sub-micron particle movement. For validation of CFD results, a simple cylindrical type of ESP is simulated and numerical prediction shows fairly good agreement with the analytical solution. In particular, the present study investigates the effect of particle diameter, inlet flow rate, and applied electric potential on particle collection efficiency and compares the numerical prediction with the experimental data, showing good agreement. It is found that the particle collection efficiency decreases with increasing inlet flow rate because the particle detention time becomes shorter, whereas it decreases with the increase in sub-micron particle diameter and with the decrease of applied electric voltage resulting from smaller terminal electrostatic velocity.

A Study on the Electrostatic Precipitation of Auto-Bias Type by Corona Discharge (코로나방전에 의한 AUTO-BIAS형태의 전기집진에 관한 연구)

  • 이주상;김신도;김광영
    • Journal of environmental and Sanitary engineering
    • /
    • v.10 no.2
    • /
    • pp.79-88
    • /
    • 1995
  • The electrostatic precipitation of Auto- Bias has the advantages of a little of power consumption by the voltage to apply only at ionizer and the prevention of fire danger by current flow over. As this ionizer wire was used WXN- Pt material of diameter 90$\mu $m, that improved ion efficiency and safety, simplified a existing source of electric power by induced Auto- Bias voltage. Also, the new type collector used electric conductivity- film wag superior a electric safety and dust collection efficiency and was possible to wash it by water. As a experiment result of this Auto- Bias electrostatic collector, the induced Auto- Bias voltage by appling D.C 4.0∼6.0kV at ionizer was 1.3∼2.3kV and then the power consumption by applied voltage was 8- l8W. The pressure loss of collector by the amount of flowing was 6.1 OmmH$_{2}$O in 300m$^{3}$/hr and showed a safe state of the dust collection. The collection efficiency by particle size was 65.1-95.8% in 0.5∼5.0$\mu $m. After corona discharge of ionizer, the remains ozone concentration was found much lower than that of ACGIH or air pollution criteria in Korea.

  • PDF

ELECTRONIC SAFING OF A DIODE LASER ARM-FIRE DEVICE

  • Kenneth E. Willis;Suk Tae Chang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.171-175
    • /
    • 1995
  • Semiconductor diode lasers that can generate one watt or more of optical energy for tens of milliseconds (quasi continuous wave) are now readily available. Several researchers have demonstrated that this power level, when properly coupled, can reliably initiate pyrotechnic mixtures. This means that the initiator containing the pyrotechnic can be protected against inadvertent initiation from electromagnetic radiation or electrostatic discharge by a conducting Faraday cage surrounding the explosive. Only a small dielectric window penetrates the housing of the initiator, thereby eliminating the conductors necessitated by a bridgewire electroexplosive device. The diode laser itself, however, functions at a low voltage (typically 3 volts) and hence is susceptible to inadvertent function from power supply short circuits, electrostatic discharge or induced RF energy. The rocket motor arm-fire device de-scribed in this paper uses a diode laser, but protects it from unintentional function with a Radio Frequency Attenuating Coupler (RFAC).The RFAC, invented by ML Aviation, a UK company, transfers power into a Faraday cage via magnetic flux, thereby protecting the diode, its drive circuit and the pyrotechnic from all electromagnetic and electrostatic hazards. The first production application of a diode laser and RFAC device was by the Korean Agency for Defense Development.

  • PDF

Characteristics of Collection Efficiency for Electrostatic Precipitator Using Dielectric Barrier Discharge Reactor (DBD(Dielectric Barrier Discharge) 반응기를 사용한 전기 집진기에서의 집진 효율 특성)

  • 강석훈;변정훈;지준호;황정호
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.11a
    • /
    • pp.449-450
    • /
    • 2002
  • DBD (Dielectric Barrier Discharge)를 사용한 저온 플라즈마 기술은 오래 전부터 효과적인 오조나이저로서 연구되고 있으며 현재에는 반응기를 이용한 NOx와 SOx, VOCs 와 같은 유해 가스를 분해, 제거에 관한 많은 연구가 진행되고 있다. 그러나 DBD 반응기내의 높은 전자 밀도와 에너지를 이용하여 입자를 대전시켜 전기 집진기 등을 이용하여 제거하는, 입자상 물질 처리에 관한 연구는 아직까지 미흡하다. (중략)

  • PDF

Monte Carlo Simulation of Phonon Transport in One-Dimensional Transient Conduction and ESD Event (1 차원 과도 전도와 정전기 방전 현상에 관한 포논 전달의 몬테 카를로 모사)

  • Oh, Jang-Hyun;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2165-2170
    • /
    • 2007
  • At nanoscales, the Boltzmann transport equation (BTE) can best describe the behavior of phonons which are energy carriers in crystalline materials. Through this study, the phonon transport in some micro/nanoscale problems was simulated with the Monte Carlo method which is a kind of the stochastic approach to the BTE. In the Monte Carlo method, the superparticles of which the number is the weighted value to the actual number of phonons are allowed to drift and be scattered by other ones based on the scattering probability. Accounting for the phonon dispersion relation and polarizations, we have confirmed the one-dimensional transient phonon transport in ballistic and diffusion limits, respectively. The thermal conductivity for GaAs was also calculated from the kinetic theory by using the proposed model. Besides, we simulated the electrostatic discharge event in the NMOS transistor as a two-dimensional problem by applying the Monte Carlo method.

  • PDF

A Design of BJT-based ESD Protection Device combining SCR for High Voltage Power Clamps

  • Jung, Jin-Woo;Koo, Yong-Seo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.3
    • /
    • pp.339-344
    • /
    • 2014
  • This paper presents a novel bipolar junction transistor (BJT) based electrostatic discharge (ESD) protection device. This protection device was designed for 20V power clamps and fabricated by a process with Bipolar-CMOS-DMOS (BCD) $0.18{\mu}m$. The current-voltage characteristics of this protection device was verified by the transmission line pulse (TLP) system and the DC BV characteristic was verified by using a semiconductor parameter analyzer. From the experimental results, the proposed device has a trigger voltage of 29.1V, holding voltage of 22.4V and low on-resistance of approximately $1.6{\Omega}$. In addition, the test of ESD robustness showed that the ESD successfully passed through human body model (HBM) 8kV. In this paper, the operational mechanism of this protection device was investigated by structural analysis of the proposed device. In addition, the proposed device were obtained as stack structures and verified.