DOI QR코드

DOI QR Code

Numerical Investigation on Capture of Sub-Micron particles in Electrostatic Precipitator without Corona Discharger

코로나 방전기가 없는 전기집진기의 미세입자 집진에 관한 수치해석

  • 이진운 (중앙대학교 기계공학부) ;
  • 장재성 (울산과학기술대 기계신소재공학부) ;
  • 이성혁 (중앙대학교 기계공학부)
  • Received : 2011.02.16
  • Accepted : 2011.06.10
  • Published : 2011.06.30

Abstract

This article presents computational fluid dynamics (CFD) simulations of sub-micron particle movements and flow characteristics in laboratory-scale electrostatic precipitator (ESP) without corona discharge, and for simulation, it uses the commercial CFD program (CFD-ACE) including electrostatic theory and Lagrangian-based equation for sub-micron particle movement. For validation of CFD results, a simple cylindrical type of ESP is simulated and numerical prediction shows fairly good agreement with the analytical solution. In particular, the present study investigates the effect of particle diameter, inlet flow rate, and applied electric potential on particle collection efficiency and compares the numerical prediction with the experimental data, showing good agreement. It is found that the particle collection efficiency decreases with increasing inlet flow rate because the particle detention time becomes shorter, whereas it decreases with the increase in sub-micron particle diameter and with the decrease of applied electric voltage resulting from smaller terminal electrostatic velocity.

Keywords

References

  1. J. Podlinski, A. Niewulis and J. Mizeraczyk, "Electrohydrodynamic flow and particle collection efficiency of a spike-plate type electrostatic precipitator", J. Electrostat., Vol. 67, pp. 99-104, 2009. https://doi.org/10.1016/j.elstat.2009.02.009
  2. A. Mizuno, "Electrostatic precipitation", IEEE Trans. Dielect. El In., Vol. 7, pp. 615-624, 2000. https://doi.org/10.1109/94.879357
  3. A. Jaworek, A. Krupa and T. Czech, "Modern electrostatic devices and methods for exhaust gas cleaning: A brief review", J. Electrostat., Vol. 65, pp. 133-155, 2007. https://doi.org/10.1016/j.elstat.2006.07.012
  4. C. S. Li and Y. M. Wen, "Control effectiveness of electrostatic precipitation airborne micro organ ism", Aerosol Sci. Tech., Vol. 37. pp. 933-938, 2003. https://doi.org/10.1080/02786820300903
  5. C. J. Hogan Jr., M. H. Lee and P. Biswas, "Capture of viral particles in soft X-ray-enhanced corona system: charge distribution and transport characteristics", Aerosol Sci. Tech., Vol. 38, pp. 475-486, 2004. https://doi.org/10.1080/02786820490462183
  6. K. J. Boelter and J. H. Davidson, "Ozone generation by indoor, electrostatic air clean", Aerosol Sci. Tech., Vol. 27, pp. 689-708, 1997. https://doi.org/10.1080/02786829708965505
  7. G. Tepper, R. Kessick and D. Pestov, "An electrospraybased ozone-free air purification technology", J. Appl. Phys., Vol. 102, 113305, 2007. https://doi.org/10.1063/1.2818364
  8. G. Tepper and R. Kessick, "A study of ionization and collection efficiencies in electrospray-based electrostatic precipitators", J. Aerosol Sci., Vol. 39, pp. 609-617, 2008. https://doi.org/10.1016/j.jaerosci.2008.03.005
  9. J. Jang, D. Akin, K. S. Lee, S. Broyles, M. R. Ladisch and R. Bashir, "Capture of airborne nanoparticles in swirling flows using non-uniform electrostatic fields for bio-sensor applications", Sensor Actuat. B, Vol. 121, pp. 560-566, 2007. https://doi.org/10.1016/j.snb.2006.04.097
  10. M. Jedrusik, J. B. Gajewski and A. J. Swireczok, "Effect of the particle diameter and corona electrode geometry on the particle migration velocity in electrostatic precipitators", J. Electrostat., Vol. 51-52, pp. 245-251, 2001. https://doi.org/10.1016/S0304-3886(01)00047-X
  11. M. Jedrusik, A. Swierczok and R. Teisseyre, "Experimental study of fly ash precipitation in a model electrostatic precipitator with discharge electrodes of different design", Powder Technol., Vol. 135-136, pp. 295-301, 2003. https://doi.org/10.1016/j.powtec.2003.08.021
  12. Y. Zhuang, Y. J. Kim, T. G. Lee and P. Biswas, "Experimental and theoretical study of ultra-fine particle behavior in electrostatic precipitators", J. Electrostat., Vol. 48, pp. 245-260, 2000. https://doi.org/10.1016/S0304-3886(99)00072-8
  13. T. J. Krinke, K. Deppert, M. H. Magnusson, F. Schmidt and H. Fissan, "Microscopic aspects of the deposition of nanoparticles from the gas phase", J. Aerosol Sci., Vol. 33, pp. 1341-1359, 2002. https://doi.org/10.1016/S0021-8502(02)00074-5
  14. X. Zhang, L. Wang and K. Zhu, "Particle tracking and particle-wall collision in a wire-plate electrostatic precipitator", J. Electrostat., Vol. 63, pp. 1057-1071, 2005. https://doi.org/10.1016/j.elstat.2005.02.002
  15. H. Lei, L. Z. Wang and Z. N. Wu, "EHD turbulent flow and Monte-Carlo simulation for particle charging and tracing in a wire-plate electrostatic precipitator", J. Electrostat. Vol. 66, pp. 130-141, 2008. https://doi.org/10.1016/j.elstat.2007.11.001
  16. S. Oglesby and G. B. Nichols, "Electrostatics Precipitation", Marcel Dekker, New York, 1978.
  17. W. C. Hinds, "Aerosol Technology", John Wiley & Sons, Inc., NewYork, 1999.
  18. P. A. Baron and K. Willeke, "Aerosol Measurement: Principles, Techniques, and Applications", 2nd ed., John Wiley & Sons, Inc., NewYork, 2001.
  19. A. Wiedensohler, "Technical Note: An approximation of the bipolar charge distribution for particles in the submicron size range", J. Aerosol Sci., Vol. 19, pp. 387-389, 1988. https://doi.org/10.1016/0021-8502(88)90278-9
  20. W. Deutsch, "Bewegung und Ladung der Electrizitatstrager im zylinderkindensator", Annalen Der Physik, Vol. 168, pp. 335-344, 1922.
  21. N. Neimarlija, I. Demirdzic and S. Muzaferija, "Finite volume method for calculation of electrostatic fields in electrostatic precipitators", J. Electrostat., Vol. 67, pp. 37-47, 2009. https://doi.org/10.1016/j.elstat.2008.10.007
  22. J. Dixkens and H. Fissan, "Development of an electrostatic precipitator for off-line particle analysis", Aerosol Sci. Tech., Vol. 30, pp. 438-453, 1999. https://doi.org/10.1080/027868299304480