• Title/Summary/Keyword: Electrostatic discharge

Search Result 262, Processing Time 0.033 seconds

Collection Efficiency of Nano Particles by Electrostatic Precipitator using Dielectric Barrier Discharge (배리어 유전체 방전을 이용한 전기 집진부에서의 나노 입자 집진 효율)

  • Kang, Suk-Hoon;Ji, Jun-Ho;Byeon, Jeong-Hoon;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.11
    • /
    • pp.1542-1547
    • /
    • 2003
  • Although dielectric barrier discharge (DBD) in air has been applied to a wider range of aftertreatment processes for HAPs (Hazardous Air Pollutants), due to its high electron density and energy, its potential use as precharging dust particles is not well known. In this work, we measured size distributions of bimodal aerosol particles and estimated collection efficiency of the particles by an electrostatic precipitator (ESP) using DBD as particle charger. To examine the particle collection with DBD charger, nano size particles of NaCl(20∼100nm) and DOS (50∼500nm) were generated by a tube furnace and an atomizer, respectively. For experimental conditions of 60㎐, 11㎸ and 60 lpm, the particle collection efficiency for the hybrid system was over 85%, based on the number of particles captured.

A Study on Electrical Degradation Properties of Epoxy Resin due to Moisture Absorption (흡습에 의한 에폭시 수지의 전기적 열화 특성에 관한 연구)

  • Lee, Sung Ill
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.9
    • /
    • pp.656-661
    • /
    • 2013
  • In this study, the moisture content, charge discharge current, electrostatic capacity and dielectric loss tangent are measured for the specimen of bisphenol type epoxy resin which is mixed with squared amorphous silica filler and dipped in hot water of $50^{\circ}C$ for 169 days. The results of this study are listed below. The longer of deposition day, the charge and discharge current was increased. It is considered that the reason is because there was water attack through the squared silica surface. The longer of deposition day, the absorption rate of all specimens was increased. It found that the absorption rate reached saturated state after 100 days. The higher frequency and the longer of deposition day, the $tan{\delta}$ was decreased. Also, It found that the $tan{\delta}$ and electrostatic capacity of the specimen which is mixed with squared filler are greater.

Collection Efficiency of Nano Particles by Electrostatic Precipitator using Dielectric Barrier Discharge (배리어 유전체 방전을 이용한 전기 집진부에서의 나노 입자 집진 효율)

  • Kang, Suk-Hoon;Byeon, Jung-Hoon;Ji, Jun-Ho;Hwang, Jung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1435-1440
    • /
    • 2003
  • Although Dielectric Barrier Discharge (DBD) in air has been applied to a wider range of aftertreatment processes for HAPs(Hazardous Air Pollutants), due to its high electron density and energy, its potential use as precharging dust particles is not well known. In this work, we measured size distributions of bimodal aerosol particles and estimated collection efficiency of the particles by electrostatic precipitator(ESP) using DBD as particle charger. To examine the particle collection with DBD charger, nano size particles of NaCl($20{\sim}100$ nm) and DOS($50{\sim}800$ nm) were generated by tube furnace and atomizer, respectively. For experimental conditions of 60 Hz, 11 kV, and 60 lpm, the particle collection efficiency for the hybrid system comprising DBD charger and ESP was over 85 %, based on the number of particles captured.

  • PDF

Measurement of Minimum Ignition Energy by Electrostatic Discharge for Flammable Ternary Gas Mixtures (3성분계 인화성 혼합가스의 최소점화에너지 측정에 관한 연구)

  • Choi, Sang-Won
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.1
    • /
    • pp.29-34
    • /
    • 2013
  • When flammable gases are mixed with air or oxygen in the explosion concentration range and are ignited by sufficiently large electrostatic discharge energy, they may explode causing severe disaster in workplace. The minimum ignition energy(MIE) of single gas-air mixtures has been already investigated by many research, but the MIE of mixtures of more than ternary gas mixture is not examined yet. The purpose of this study is to investigate the MIE of a ternary gas(methane, ethylene, hydrogen, propane) mixtures experimentally. The results of our experiment show that the ignition of a methane-ethylene-air, methane-hydrogen-air, methane-propane-air, ethylene-hydrogen-air, ethylene-propane-air and hydrogen-propane-air mixture due to electrostatic discharge energy primarily depends on that the mixture: the MIE decreases gradually with the increase of having the lower MIE than other mixture ratio in the normal atmospheric pressure.

Control of Background Doping Concentration (BDC) for Electrostatic Discharge (ESD) Protection of High Voltage Operating LDI Chip (고전압용 LDI 칩의 정전기 보호를 위한 EDNMOS 소자의 백그라운드 도핑 특성)

  • Seo, Yong-Jin;Kim, Kil-Ho;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.140-141
    • /
    • 2006
  • Background doping concentration (BDC) is proven to be a critical factor to affect the high current behavior of the extended drain NMOSFET (EDNMOS) devices. The EDNMOS device with low BDC suffers from strong snapback in the high current region, which results in poor electrostatic discharge (ESD) protection performance and high latchup risk. However, the strong snapback can be avoided in the EDNMOS device with high BDC. This implies that both the good ESD protection performance and the latchup immunity can be realized in terms of the EDNMOS by properly controlling its BDC.

  • PDF

Experimental Investigation of the Electrostatic Discharge(ESD) Damage in Packaged Semiconductor Devices (패키지 반도체소자의 ESD 손상에 대한 실험적 연구)

  • Kim, Sang-Ryull;Kim, Doo-Hyun;Kang, Dong-Kyu
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.94-100
    • /
    • 2002
  • As the use of automatic handling equipment for sensitive semiconductor devices is rapidly increased, manufacturers of electronic components and equipments need to be more alert to the problem of electrostatic discharges(ESD). In order to analyze damage characteristics of semiconductor device damaged by ESD, this study adopts a new charged-device model(CDM), field-induced charged model(FCDM) simulator that is suitable for rapid, routine testing of semiconductor devices and provides a fast and inexpensive test that faithfully represents ESD hazards in plants. High voltage applied to the device under test is raised by the field of non-contacting electrodes in the FCDM simulator, which avoids premature device stressing and permits a faster test cycle. Discharge current and time are measured and calculated. The characteristics of electrostatic attenuation of domestic semiconductor devices are investigated to evaluate the ESD phenomena in the semiconductors. Also, the field charging mechanism, the device thresholds and failure modes are investigated and analyzed. The damaged devices obtained in the simulator are analyzed and evaluated by SEM. The results obtained in this paper can be used to prevent semiconductor devices form ESD hazards and be a foundation of research area and industry relevant to ESD phenomena.

Predicted Optimum Efficiency due to Changes in the Design Parameters of the Small Electrostatic Precipitator (설계인자 변화에 따른 소형 전기집진장치의 최적효율 예측)

  • Suh, Jeong-Min;Yi, Pyong-In;Jung, Moon-Sub;Park, Jeong-Ho;Lim, Woo-Taik;Park, Chool-Jae;Choi, Kum-Chan
    • Journal of Environmental Science International
    • /
    • v.22 no.9
    • /
    • pp.1187-1197
    • /
    • 2013
  • The result of a small electrostatic precipitator which is in order to decrease indoor air pollution for optimal efficiency was shown as follows. Although the closer distance between the discharge electrode and dust collecting electrode shows the better throughput efficiency by forming strong electrostatic Field, it does not have profound impact in case of optimal dust collecting area. G.P(gas passage) which is the distance from dust collecting electrode to dust collecting electrode is a crucial factor to decide dust collecting efficiency. The narrower distance of G.P shows the better throughput efficiency whereas it decreases when the distance is too narrow since sparks ensue by increasing the capacity of electrostatic charging system 5 mm regards as optimal efficiency in this experiment. Although the higher voltage shows the higher dust collecting efficiency overall, the experiment was not able to keep performing since the sparks which decrease dust collecting efficiency ensue over 40 kV. The efficient and safe voltage state is considered 3.6 kV in this experiment. The most crucial factor for dust collecting efficiency of an electrostatic precipitator which is in order to decrease indoor air pollution is applied voltage. In addition, optimal raw gas flow rate(2.4 m/sec) is more important factor than the excessive increase of dust collecting area.

Development of LGP Dry Cleaning Equipment using ESD and Adhesive Roll (ESD와 점착 롤 제진을 이용한 LGP 건식 세정 장치 개발)

  • Ku, Ja-Yl;Jun, SungHo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.8
    • /
    • pp.195-201
    • /
    • 2014
  • In this paper, we developed a LGP(Light Guide Panel) dry cleaning system for particle cleaning using corona discharge and dry adhesive roll. Therefore, we design a cleaning mechanism that can be applied dry adhesive dust removal roll and ESD(electrostatic discharge) by using corona discharge. Also, we design and implementation of equipment, which can loading, unloading and transfer LGP automatically. The developed equipment is dust and particle cleaning experimental results to demonstrate its stability.

Experimental Study on the Corona Discharge Characteristics of the Pin-plate Electrode Geometries (핀이 부착된 와이어형 방전극의 형상에 따른 코로나 방전특성에 대한 연구)

  • Cheong Seongir;Lee Jaekeun;Chung Dongkyu;Ahn Youngchull
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.95-100
    • /
    • 2006
  • Electrostatic precipitators(EPs) have low pressure drop and high dust collection efficiency and are widely used for industrial dust collectors. The current-voltage characteristics, which are important to maintain high dust collection efficiency, depend on several factor: discharge electrode shape, gas flow property, dust loading etc. In this study, experiments are performed to investigate the current-voltage characteristics of the corona discharge of various electrode geometries and an empirical model is proposed to predict current-voltage characteristics of the corona discharge. The corona onset voltage correction coefficient$(\alpha)$ and the geometry correction coefficient$(k_g)$ are used to the conventional equation for wire-plate type discharge electrode. The corona onset voltages are -6.3kV and almost constant when the numbers of discharge pins are varied from 3 to 9. The length of discharge pins has very sensitive effects on the corona onset voltage. They are increased from -6.3 to -7.8kV when the discharge pin length are 8.5 and 4.5mm, respectively. The empirical model shows good agreement with experimental results and can predict the effects of discharge pin length and number.

Particle collection characteristics of carbon fiber sheet discharge electrode by particle size and application to air cleaner (탄소섬유 시트 방전극의 입자 크기 별 집진 특성 및 공기청정기로의 응용)

  • shin, Dongho;Woo, Chang Gyu;Hong, Keejung;Kim, Hak-Joon;Kim, Yong-Jin;Han, Bangwoo
    • Particle and aerosol research
    • /
    • v.14 no.3
    • /
    • pp.81-88
    • /
    • 2018
  • The market for improving the indoor air quality is continuously increasing, and air cleaners are the representative products. As interest in indoor air quality increases, so are the ultrafine particle which are harmful to the human body. Despite its many advantages, electrostatic precipitators are less used in indoor air due to ozone production. In this study, the carbon fiber sheet was applied to the discharge electrode and compared with the conventional tungsten wire discharge electrode. The particle collection efficiency and the amount of ozone generation were measured for 10-100 nm particles. Furthermore, it was applied to commercial air purifier with electrostatic precipitator to compare particle removal performance. The carbon fiber sheet type discharge electrode generates a small amount of ozone, and thus it can be applied to improve indoor air quality.