• Title/Summary/Keyword: Electrostatic Force

Search Result 281, Processing Time 0.025 seconds

Electromigration in Molten-phase Ge2Sb2Te5 and Effects of Doping on Atomic Migration Rate

  • Joo, Young-Chang;Yang, Tae-Youl;Cho, Ju-Young;Park, Yong-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.1
    • /
    • pp.43-47
    • /
    • 2012
  • Electromigration in molten $Ge_2Sb_2Te_5$ (GST) was characterized using pulsed DC stress to an isolated line structure. When an electrical pulse was applied to the GST, GST lines were melted by Joule heating, and Ge and Sb atoms migrate to the cathode, whereas Te atoms migrate to the anode. This elemental separation in the molten GST was caused by an electrostatic force-induced electromigration. The effects of O-, N-, and Bi-doping on the electromigration were also investigated, and atomic mobility changes by the doping were investigated by quantifying $DZ^*$ values. The Bi -doping did not affect the $DZ^*$ values of the constituent atoms in the molten GST, but the D$DZ^*$ values decreased by O-doping and N-doping.

Modeling and Measurement of Electrostatic Micro Mirror Array Fabricated with Single Layer Polysilicon Micromachining Technology (단층 다결정 실리콘 마이크로머시닝 기술로 제작된 정전형 마이크로 미러 어레이의 모델링 및 측정)

  • Min, Young-Hoon;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.612-614
    • /
    • 1997
  • Silicon based micro mirror array is a highly efficient component for use in optical applications such as adaptive optical systems and optical correlators. A micro mirror array designed, fabricated and tested here is consisted of $5{\times}5$ single layer polysilicon, electrostatically driven actuators. In this paper, deflection characteristics and pull-in behavior of the actuators for analog control was studied and particularly, the influence of the residual stress in flexure beams for the restorative force of actuators was considered. The springs are modeled as a residual stress-free spring and a spring with residual stress. In calculation, a mirror with the residual stress-free springs has 30.3N/m spring constant and 31.1V pull-in voltage. On the other hand, a mirror with the stressed springs has 23.6N/m and 27.4V respectively. The experimental result, which is 20.5N/m and 25.5V, shows that the stressed springs ore well modeled.

  • PDF

Structural Analysis and Optimum Design of a De-coupled Vertical Micro-Gyroscope (비연성 수직형 마이크로 자이로스코프의 구조해석 및 최적설계)

  • Park, Sung-Kyoon;Jeong, Hee-Moon;Kim, Myung-Hoon;Kim, Hyung-Tae;Ha, Sung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1840-1848
    • /
    • 2003
  • This paper presents the structural analysis and optimum design of a vertical micro-gyroscope with decoupled 2 degrees of freedom (DOF), driven by electrostatic force. Simplified beam models were presented to derive the structural stiffness of the driving spring of the U shape and the sensing spring of I shape. A finite element analysis (FEA) was performed to validate each derivation. A total mass and a polar mass moment of inertia were also obtained and used in calculating the resonance frequency at each mode of the 2 DOF. The resonance frequencies of the total system were calculated using the proposed models and it has been found that they were in excellent agreement with those of the FEA. Finally, the developed analysis program was then linked to an optimum design module, and an optimum design of the micro-gyroscope was successfully performed.

Thermal Frequency Tuning of Microactuator with Polymer Membrane (온도 변화를 이용한 고분자 막 마이크로 액추에이터의 공진 주파수 튜닝)

  • Lee, Seung-Hoon;Lee, Seok-Woo;Kwon, Hyuk-Jun;Lee, Kwang-Cheol;Lee, Seung-S.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1857-1862
    • /
    • 2008
  • Resonant frequency tuning of micro devices is essential to achieve performance uniformity and high sensitivity. Previously reported frequency tuning methods using electrostatic force or mass deposition are not directly applicable to non-conducting polymer devices and have limitations such as dielectric breakdown or low tunable bandwidth. In this paper, thermally frequency-tunable microactuators with poly-dimethylsiloxane membranes are proposed. Permanent and/or nonpermanent frequency tunings are possible using a simple temperature control of the device. Resonant frequency and Q-factor variations of devices according to temperature change were studied using a micro heater and laser Doppler vibrometer. The initial resonant frequencies determined by polymer curing and hardening temperatures are reversibly tuned by thermal cycles. The measured resonant frequency of 9.7 kHz was tuned up by ${\sim}25%$ and Q-factor was increased from 14.5 to 27 as the micro heater voltage increased from 0 to 70 V.

  • PDF

Development and Performance Evaluation of Polymer Micro-actuator using Segmented Polyurethane and Polymer Composite Electrode (세그먼트화 폴리우레탄을 이용한 고분자 마이크로 액츄에이터의 제작 및 고분자 전극의 상태에 따른 구동성능)

  • Jung Young Dae;Park Han Soo;Jo Nam Ju;Jeong Hae Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.180-187
    • /
    • 2005
  • This paper is focused on the development of the flexible electrode for disc-type polymer actuators using Segmented Polyurethane(SPU). This paper consists of two parts. The one is about the mechanical property such as elastic modulus. these parameters mainly affect behaviors of polymer actuators and the other is about the electro-chemical property such as the surface resistance of the composite electrode affects the strength of electrostatic force, results in the deformation of polymer actuators. The Young's modulus was measured by UTM. As result, by increasing the modulus of a body of polymer actuators, the maximum displacement of polymer actuators are decreased. The surface resistance of the electrode was measured by 4 point probe system. Compared with the conductive silver grease, the displacement of polymer actuators using carbon black(CB) composite electrodes is comparably small but CB composite electrode should be the practical approach for the improvement of the performance of all-solid actuators, compared with another types of electrode materials.

Studies on the Adsorption of Cationic Starches onto BCTMP, BKP and Talc and Their Responses to Compozil System(I)-Adsorption Characteristics of Cationic Starches (BCTMP, BKP 및 활석의 양성전분 흡착특성과 콤포질 시스템에 대한 거동 연구 (제1보)-양성전분의 흡착특성-)

  • 이학래;허동명
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.29 no.4
    • /
    • pp.45-52
    • /
    • 1997
  • This study was carried out to investigate the adsorption characteristics of cationic starches onto BKP, BCTMP and talc. Concentration of the unadsorbed cationic starch contained in the supernatant of the pulp or talc slurries was determined using a spectoscopy method and the adsorption isotherm of cationc starch was constructed. When the equilibrium concentration of the cationic starch was low, almost complete adsorption of the starch onto BKP and BCTMP was observed. This indicates that electrostatic attraction is the main driving force for the adsorption of cationc starches onto pulps. BCTMP adsorbed greater amount of cationic starches than BKP since it contained more anionc functional groups on its surface. The adsorption amount of the cationic starch increased as the cationicity of the starches decreased. Surface charge density of the pulp and starch adsorption increased as the pH of the pulp slurry increased. Adsorption amount of the cationic starch onto talc was lower than that onto the pulp due to its low charge density and hydrophobic surface property.

  • PDF

Effect of Neutral Salts on the Reactive Dyeing of Silk (II) - Effect of Anions - (중성염이 견의 반응염색에 미치는 영향 (II) - 음이온의 영향 -)

  • 도성국;박찬헌;권지윤
    • Textile Coloration and Finishing
    • /
    • v.13 no.2
    • /
    • pp.114-119
    • /
    • 2001
  • Four kinds of neutral sodium salts with different anions, NaF, NaCl, NaBr, and NaI, were added to the dye bath to accurately understand the effect of anions on the reactive dyeing of silk with C. I. Reactive Black 5. The sodium cation towered the negative surface potential of the silk and increased the dye-uptake on fille fabric as reported previously. However, because of the discrepancy in the anions'inhibition power from cation's lowering: the surface negative potential the amount of the dye on the silk fiber was different from each other in the order of $F^->Cl^-> Br^-I^-$. The activation energy(E$_{a}$) lot the dyeing was in the order of $F^->Cl^-> Br^-I^-$ but the dye-uptake on the fabric and the activation free energy$(\Delta{G}^*)$, the real energy barrier fort the reaction, were in the order of $F^->Cl^-> Br^-I^-$ because the strength of the interaction of the anions with sodium cations was the salute as the order of the latter. In other words F$^{[-1000]}$ exerted the weakest electrostatic force on $Na^+$ and competed with the dyestuff anions least of all. The decrease in $\Delta{S}^*$ may be due to the looesly bonded activated complex of dyestuff anions, sodium cations and fiber molecules at transition state. It was clarified from the Brёnsted equation that sodium salts with different anions also had fille ionic strength effect and the specific salt effect on the reactive dyeing.g.

  • PDF

Numerical analysis of particle transport in low-pressure, low-temperature plasma environment

  • Kim, Heon Chang
    • Particle and aerosol research
    • /
    • v.5 no.3
    • /
    • pp.123-131
    • /
    • 2009
  • This paper presents simulation results of particle transport in low-pressure, low-temperature plasma environment. The size dependent transport of particles in the plasma is investigated with a two-dimensional simulation tool developed in-house for plasma chamber analysis and design. The plasma model consists of the first two and three moments of the Boltzmann equation for ion and electron fluids respectively, coupled to Poisson's equation for the self-consistent electric field. The particle transport model takes into account all important factors, such as gravitational, electrostatic, ion drag, neutral drag and Brownian forces, affecting the motion of particles in the plasma environment. The particle transport model coupled with both neutral fluid and plasma models is simulated through a Lagrangian approach tracking the individual trajectory of each particle by taking a force balance on the particle. The size dependant trap locations of particles ranging from a few nm to a few ${\mu}m$ are identified in both electropositive and electronegative plasmas. The simulation results show that particles are trapped at locations where the forces acting on them balance. While fine particles tend to be trapped in the bulk, large particles accumulate near bottom sheath boundaries and around material interfaces, such as wafer and electrode edges where a sudden change in electric field occurs. Overall, small particles form a "dome" shape around the center of the plasma reactor and are also trapped in a "ring" near the radial sheath boundaries, while larger particles accumulate only in the "ring". These simulation results are qualitatively in good agreement with experimental observation.

  • PDF

Application of Polyaniline to an Enzyme-Amplified Electrochemical Immunosensor as an Electroactive Report Molecule

  • Kwon, Seong-Jung;Seo, Myung-Eun;Yang, Hae-Sik;Kim, Sang-Youl;Kwak, Ju-Hyoun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3103-3108
    • /
    • 2010
  • Conducting polymers (CPs) are widely used as matrixes for the entrapment of enzymes in analytical chemistry and biosensing devices. However, enzyme-catalyzed polymerization of CPs is rarely used for immunosensing due to the difficulties involved in the quantitative analysis of colloidal CPs in solution phase. In this study, an enzyme-amplified electrocatalytic immunosensor employing a CP as a redox marker has been developed. A polyanionic polymer matrix, $\alpha$-amino-$\omega$-thiol terminated poly(acrylic acid), was employed for precipitation of CP. The acrylic acid group acts as a polyanionic template. The thiol terminus of the polymer was used to produce self-assembled monolayers (SAMs) on Au electrodes and the amine terminus was employed for immobilization of biomolecules. In an enzymeamplified sandwich type immunosensor, the polyaniline (PANI) produced enzymatically is attracted by the electrostatic force of the matrix polymer. The precipitated PANI was characterized by electrochemical methods.

Torsional Micromechanical Switching Element Including Bumps for Reducing the Voltage Difference Between Pull-in and Release (Pull-in과 release 전압차 감소용 돌기구조를 갖는 비틀림형 초소형 기계적 스위칭 소자)

  • Ha, Jong-Min;Han, Seung-O;Park, Jeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.9
    • /
    • pp.471-475
    • /
    • 2001
  • ln this paper, a micromachined micromechanical switch is presented. The presented switch is operated in the vertical direction to the substrate by an electrostatic force between two parallel plates. The moving plate is pulled down to connect the bumps of the bias node$(V_{DD}/ or GND)$ to the bumps of the output node when a oltage difference exists between the moving plate and the input plate. The switch was designed to operate at a low switching voltage$(\risingdotseq5V)$ by including a large-area, narrow-gap, parallel plate capacitor A theoretical analysis of the designed switch was performed in order to determine its geometry fitting the desired pull-in voltage and release voltage. The designed switch was fabricated by surface micromachining combined with Ni electroplating. From the experimental results of the fabricated switch, its pull-in voltage came Out to be less than 5V and the measured maximum allowable current was 150mA. The measured average ON-state resistance was about 8$\Omega$, and the OFF-state resistance was too high to be measured with digital multimeter.

  • PDF