• Title/Summary/Keyword: Electrostatic Discharge

Search Result 263, Processing Time 0.021 seconds

Experimental Investigations on Explosion Characteristics of LPG/Air Mixture by Electrostatic Discharge Energies (정전기 방전에너지에 따른 LPG/공기 혼합물의 폭발특성에 관한 실험적 연구)

  • Kim, Nam-Suk;Park, Dal-Jae
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.6
    • /
    • pp.26-30
    • /
    • 2011
  • Experimental investigations were performed to examine the effects of different electrostatic discharge ignition energies on LPG/air mixture explosions in an explosion chamber. The chamber consisted of 500 mm in length, with a $100{\times}100mm^2$ cross section. Three different ignition energies were used: 0.30 mJ, 46 mJ and 98 mJ. Flame propagations were recorded by a high speed video camera. The results of flame speed and pressure obtained from the different ignition energies were discussed. It was found that as the energy increased, different flame initiations occurred. This caused the time interval in both the flame and pressure developments. It was also found that the flame speed and the pressure were less sensitive to both 0.30 mJ and 46 mJ, except for the ignition energy of 98 mJ.

Analysis of a Parasitic-Diode-Triggered Electrostatic Discharge Protection Circuit for 12 V Applications

  • Song, Bo Bae;Lee, Byung Seok;Yang, Yil Suk;Koo, Yong-Seo
    • ETRI Journal
    • /
    • v.39 no.5
    • /
    • pp.746-755
    • /
    • 2017
  • In this paper, an electrostatic discharge (ESD) protection circuit is designed for use as a 12 V power clamp by using a parasitic-diode-triggered silicon controlled rectifier. The breakdown voltage and trigger voltage ($V_t$) of the proposed ESD protection circuit are improved by varying the length between the n-well and the p-well, and by adding $n^+/p^+$ floating regions. Moreover, the holding voltage ($V_h$) is improved by using segmented technology. The proposed circuit was fabricated using a $0.18-{\mu}m$ bipolar-CMOS-DMOS process with a width of $100{\mu}m$. The electrical characteristics and robustness of the proposed ESD circuit were analyzed using transmission line pulse measurements and an ESD pulse generator. The electrical characteristics of the proposed circuit were also analyzed at high temperature (300 K to 500 K) to verify thermal performance. After optimization, the $V_t$ of the proposed circuit increased from 14 V to 27.8 V, and $V_h$ increased from 5.3 V to 13.6 V. The proposed circuit exhibited good robustness characteristics, enduring human-body-model surges at 7.4 kV and machine-model surges at 450 V.

Improvements of Extended Drain NMOS (EDNMOS) Device for Electrostatic Discharge (ESD) Protection of High Voltage Operating LDI Chip (고전압용 LDI 칩의 정전기 보호를 위한 EDNMOS 소자의 특성 개선)

  • Yang, Jun-Won;Seo, Yong-Jin
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.2
    • /
    • pp.18-24
    • /
    • 2012
  • High current behaviors of the extended drain n-type metal-oxide-semiconductor field effects transistor (EDNMOSFET) for electrostatic discharge (ESD) protection of high voltage operating LDI (LCD Driver IC) chip are analyzed. Both the transmission line pulse (TLP) data and the thermal incorporated 2-dimensional simulation analysis demonstrate a characteristic double snapback phenomenon after triggering of biploar junction transistor (BJT) operation. Also, background doping concentration (BDC) is proven to be a critical factor to affect the high current behavior of the EDNMOS devices. The EDNMOS device with low BDC suffers from strong snapback in the high current region, which results in poor ESD protection performance and high latchup risk. However, the strong snapback can be avoided in the EDNMOS device with high BDC. This implies that both the good ESD protection performance and the latchup immunity can be realized in terms of the EDNMOS by properly controlling its BDC.

Human body model electrostatic discharge tester using metal oxide semiconductor-controlled thyristors

  • Dong Yun Jung;Kun Sik Park;Sang In Kim;Sungkyu Kwon;Doo Hyung Cho;Hyun Gyu Jang;Jongil Won;Jong-Won Lim
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.543-550
    • /
    • 2023
  • Electrostatic discharge (ESD) testing for human body model tests is an essential part of the reliability evaluation of electronic/electrical devices and components. However, global environmental concerns have called for the need to replace the mercury-wetted relay switches, which have been used in ESD testers. Therefore, herein, we propose an ESD tester using metal oxide semiconductor-controlled thyristor (MCT) devices with a significantly higher rising rate of anode current (di/dt) characteristics. These MCTs, which have a breakdown voltage beyond 3000 V, were developed through an in-house foundry. As a replacement for the existing mercury relays, the proposed ESD tester with the developed MCT satisfies all the requirements stipulated in the JS-001 standard for conditions at or below 2000 V. Moreover, unlike traditional relays, the proposed ESD tester does not generate resonance; therefore, no additional circuitry is required for resonant removal. To the best of our knowledge, the proposed ESD tester is the first study to meet the JS-001 specification by applying a new switch instead of an existing mercury-wetted relay.

Reaction Characteristics Study of Aluminum-Copper(II) Oxide Composites Initiated by the Electrostatic Discharge (Aluminum-Copper(II) Oxide Composite의 정전기에 의한 반응 특성 연구)

  • Kim, Minjun;Kim, Sung Ho;Kim, Jayoung;Im, Yeseul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.591-598
    • /
    • 2018
  • The reaction characteristics of aluminum-copper(II) oxide composites initiated by the electrostatic discharge were studied as changing the aluminum particle size. Three different sizes of aluminum particles with nano-size copper(II)-oxide particle were used in the study. These composites were manufactured by two methods i.e. a shock-gel method and a self-assembly method. The larger aluminum particle size was, the less sensitive and less violent these composites were based on the electrostatic test. On the analysis of high speed camera about ignition appearances and burning time, the burning speed was faster when aluminum particle size was smaller.

Removal characteristics of submicron particles with electrostatic precipitator under $CO_2$ rich condition ($CO_2$ 농후 조건에서 전기집진장치의 Submicron 입자 제거 특성)

  • Kim, Hak-Joon;Han, Bang-Woo;Song, Dong-Keun;Jeong, Sang-Hyun;Won, Jong-Oung;Kim, Yong-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2116-2121
    • /
    • 2008
  • Removal of particles at rich $CO_2$ condition has been important in the gas cleaning for $CO_2$ capture in Oxy-fuel combustion. Electrostatic precipitators (ESPs) have been widely used to remove particles in exhaust gases from present air combustion. However, few studies on characteristics of ESPs under a $CO_2$ rich gas condition have been conducted. In this study, we investigated integration of electrostatic precipitators (ESP) for removing submicron particles along with corona discharge characteristics and collection efficiency of submicron particles at $CO_2$ rich condition. The overall performance of ESP is represented by collection efficiency as function of energy consumption. The experiment results showed that higher the concentration of $CO_2$ gas, the corona discharge currents were lower at the same applied voltages and the spark over occurred at lower voltages, and the collection efficiency of submicron particles under 50, 80% $CO_2$ conditions was much lower than that under 100% Air.

  • PDF

Effects of Pressure and Temperature of Airflow on Performance of Nozzle-type Electrostatic Eliminator

  • CHOI Kwang-Seok;MOGAMI Tomofumi;SUZUKI Teruo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.6
    • /
    • pp.228-232
    • /
    • 2005
  • The effects of the pressure and temperature of airflow were experimentally investigated to improve the performance of a nozzle-type electrostatic eliminator. The pressure ($A_P$) and the temperature ($A_T$) of the airflow toward the needle electrode were controlled in the ranges of 0 Mpa to 0.3 Mpa and of $25^{\circ}C$ to $125^{\circ}C$, respectively. It was confirmed that the ion-generation ability was increased depending on the magnitude of the $A_P$ and the $A_T$ of the airflow provided to the surrounding region of the needle electrode in the nozzle-type electrostatic eliminator. In addition, it was clear that the mixed effect of the $A_P$ and the $A_T$ of the airflow was large. These results were attributed mainly to (1) the activation of the corona discharge by the $A_T$, (2) the change of the decomposition and production of a suppression gas by the $A_T$, (3) the blow-off of the suppression gas near the needle electrode by the $A_P$, and (4) the change of the distribution of the current densities on the needle electrode by the $A_P$.

A statistical estimation of electromagnetic detection rate caused by electrostatic discharge (정전기 방전에 의한 전자 간섭빈도의 통계적 추정)

  • 강인호;이창복;정옥현
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.10
    • /
    • pp.7-13
    • /
    • 1997
  • A modern electronic system located at a certain distance form the discharge may respond with unexpected sensitivity ot that phenomenon, even if the phenomenon is so slight as to have been ignored in the port. It has been found that electromagnetic wave energy is emitted as a results of this electrostatic discharge between metallic objects. In order to theoretically examine the peculiar phenomenon, we propose an analytical approach to model the indirect ESD effect. A soruce model is given here using the spark resistence presented by rompe-weizel. A model experiment for indirect eSD is also conducted to express ESD detection rate by the statistical estimation. We verify that the statistical estimations agree the theoretical curve resulted from the rompe-weisel resistence.

  • PDF

Stress mode proposal for an efficient ESD test (효율적인 ESD(ElectroStatic Discharge) test를 위한 Stress mode 제안)

  • Gang, Ji-Ung;Chang, Seog-Weon;Kwack, Kae-Dal
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1289-1294
    • /
    • 2008
  • Electrostatic discharge(ESD) phenomenon is a serious reliability concern. It causes approximately most of all field failures of IC. To quality the ESD immunity of IC product, there are some test methods and standards developed. ESD events have been classified into 3 models, which are HBM, MM and CDM. All the test methods are designed to evaluate the ESD immunity of IC products. This study provides an overview among ESD test methods on ICs and an efficient ESD stress method. We have estimated on all pin combination about the positive and negative ESD stress. We make out the weakest stress mode. This mode called a worst-case mode. We proposed that positive supply voltage pin and I/O pin combination is efficient because it is a worst-case mode.

  • PDF

System Level ESD Analysis - A Comprehensive Review I on ESD Generator Modeling

  • Yousaf, Jawad;Lee, Hosang;Nah, Wansoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2017-2032
    • /
    • 2018
  • This study presents, for the first time, state-of-the art review of the various techniques for the modeling of the electrostatic discharge (ESD) generators for the ESD analysis and testing. After a brief overview of the ESD generator, the study provides an in-depth review of ESD generator modeling (analytical, circuit and numerical modeling) techniques for the contact discharge mode. The proposed techniques for each modeling approach are compared to illustrates their differences and limitations.