• Title/Summary/Keyword: Electrostatic Actuator

Search Result 64, Processing Time 0.028 seconds

Fabrication of an Electrostatic Micro Actuator Using p+ Diaphragm As an Electrode (p+ 박막을 전극으로 한 정전형 마이크로 구동기의 제작)

  • Han, Sang-Woo;Yang, Eui-Hyeok;Yang, Sang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.141-143
    • /
    • 1994
  • In this paper, an electrostatic micro-actuator is fabricated using flat p+ diaphragm. To avoid the buckling of the flat p+ diaphragm, the processes are designed appropriately. The fabrication processes of the actuator are the anisotropic etching with EPW, the boron diffusion process, Al deposition and the silicon to glass bonding using the negative photoresist. The distance between the p+ and Al electrodes is $10{\mu}m$, and the thickness of the p+ diaphragm is $2{\mu}m$. The measurement of the characteristic of the actuator is performed at 50V. The center displacement of the diaphragm is $1.5{\mu}m$ at 10Hz. In comparison with the experimental data of the actuator with corrugated diaphragm, it is confirmed that the actuator with flat diaphragm is more effective than that with corrugated one in the small deflection region.

  • PDF

Design of an electrostatic 2-axis MEMS stage with large area platform (대면적 플랫폼을 갖는 정전형 2 축 MEMS 스테이지의 설계)

  • 정일진;전종업;백경록;박규열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.373-378
    • /
    • 2004
  • Recently the electrostatic 2-axis MEMS stages have been fabricated for the purpose of an application to PSD (Probebased Storage Device). However, most of them have low area efficiency, which is undesirable as data storage devices, since all of the components (springs, comb electrodes, anchors, platform, etc.) are placed in-plane. In this paper, we present a novel structure of electrostatic 2-axis MEMS stage that is characterized by having large area platform. For large area efficiency, the actuator part consisting of mainly comb electrodes and springs is placed right below the platform. In this article, the structures and operational principle of the MEMS stages are described, followed by design procedure, structural and modal analysis using FEM(Finite Element Method). The area efficiency of the MEMS stage was designed to be about 55%, that is very large compared with conventional ones having a few percentage.

  • PDF

Design of an Electrostatic 2-axis MEMS Stage having Large Area Platform for Probe-based Storage Devices (대면적 플랫폼을 갖는 Probe-based Storage Device(PSD)용 정전형 2축 MEMS 스테이지의 설계)

  • Chung, Il-Jin;Jeon, Jong-Up
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.82-90
    • /
    • 2006
  • Recently the electrostatic 2-axis MEMS stages have been fabricated for the purpose of an application to PSD (Probe-based Storage Device). However, all of the components(platform, comb electrodes, springs, anchors, etc.) in those stages are placed in-plane so that they have low areal efficienceis, which is undesirable as data storage devices. In this paper, we present a novel structure of an electrostatic 2-axis MEMS stage that is characterized by having large area platform. for obtaining large area efficiency, the actuator part consisting of mainly comb electrodes and springs is placed right below the platform. The structure and operational principle of the MEMS stage are described, followed by a design procedure, structural and modal analyses using FEM(Finite Element Method). The areal efficiency of the MEMS stage was designed to be about 25%, which is very large compared with the conventional ones having a few percentage.

Automated CAE Evaluation of Electrostatic Micro Actuator (정전 마이크로 액츄에이터의 자동 CAE 평가)

  • Lee, Joon-Seong
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.711-715
    • /
    • 1996
  • This paper describes an automated computer-aided engineering (CAE) system for micromachines whose size range 10 to 10$^3$${\mu}{\textrm}{m}$. An automatic finite element mesh generation technique, which is based on the fuzzy knowledge processing and computational geometry techniques, is incorporated into the system, together with one of commercial finite clement (FE) analysis codes, MARC, and one of commercial solid modelers, Designbase. The system allows a geometry model of concern to be a automatically converted to different FE models, depending on physical phenomena to be analyzed, i.e. electrostatic analysis, stress analysis, modal analysis and so on. The FE analysis models are then exported to the FE analysis code, and then analyses are performed. This system is successfully applied to an electrostatic micro actuator.

  • PDF

A Microcatuator for High-Density Hard Disk Drive Using Skewed Electrode Arrays (경사 전극 배열을 이용한 고밀도 하드 디스크의 마이크로 구동부 제작)

  • Choi, Seok-Moon;Park, Sung-Jun
    • Journal of Institute of Convergence Technology
    • /
    • v.1 no.2
    • /
    • pp.6-15
    • /
    • 2011
  • This paper reports the design and fabrication of a micro-electro-mechanical-system(MEMS)-based electrostatic angular microactuator for a dual-stage servo. The proposed actuator employs a novel electrode pattern named "skewed electrode array(SEA)" scheme. It is shown that SEA has better linearity than a parallel plate type actuator and stronger force than a comb-drive based actuator. The moving and the fixed electrodes are arranged to make the driving force perpendicular to the rotating moment of arm. By changing the electrode overlap length, the magnitude of electrostatic force and stable displacement will be changed. In order to optimize the design, an electrostatic FE analysis was carried out and an empirical force model was established for SEA. A new assembly method which will allow the active electrodes to be located beneath the slider was developed. The active electrodes are connected by inner and outer rings lifted on the base substrate, and the inner and outer rings are connected to platform on which the slider locates. Electrostatic force between active electrodes and platform can be used for exiting out of plane modes, so this provides the possibility of the flying height control. A microactuator that can position the pico-slider over ${\pm}0.5{\mu}m$ using under 20 volts for a 2 kHz fine-tracking servo was designed and fabricated using SoG process.

  • PDF

Development of high-power haptic vibration actuator module and interface based on bidirectional electrostatic force driving structure (양방향 정전기력 구동 구조에 기반한 고출력 햅틱 진동 액추에이터 모듈 및 인터페이스 개발)

  • Kim, Jae-Ik;Lee, Jae-Kyung;Park, Young-Hwan;Seo, Jeong-Tae;Yang, Tae-Heon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.662-667
    • /
    • 2021
  • Vibrotactile feedback is a major function of the latest touch displays, which greatly improves the user's operability and immersion when interacting with the interface on the screen. In this study, we propose a vibrotactile actuator suitable for mounting on the back side of a mid- to large-sized display because it can generate a strong vibration output by applying an electrostatic force-based mechanism and can be manufactured in a thin flat panel type. The proposed actuator was developed in a structure capable of amplifying the vibration force by alternating up and down with electrostatic force by the upper and lower electrodes that are spaced apart from the electrically grounded mass suspended from a radial leaf spring. As a result of the performance evaluation, the developed bar-type module with two built-in actuators showed excellent vibration output of up to 3.3 g at 170 Hz, confirming the possibility of providing haptic feedback in medium and large touch displays.

Skewed Electrode Array(SEA) and Its Application as an Angular Microactuator (경사 전극 배열을 이용한 각도방향 마이크로 구동부 제작)

  • Choi, Seok-Moon;Park, Sung-Jun
    • Journal of Institute of Convergence Technology
    • /
    • v.1 no.2
    • /
    • pp.16-24
    • /
    • 2011
  • The angular electrostatic microactuator using skewed electrode array (SEA) scheme was proposed. The moving and fixed electrodes are arranged to make the driving force perpendicular to the rotating moment of arm. By changing the electrode overlap length, the magnitude of electrostatic force and stable displacement will be changed. In order to optimize the design, electrostatic FE analysis were carried out and the empirical force model was established for SEA. Simulation was performed to make the comparison between conventional actuators and SEA. The proposed SEA generates actuating torque 2 times greater than a comb-drive and stable actuator displacement 40% greater than a parallel plate type actuator. The angular electrostatic microactuator using skewed SEA scheme was designed and fabricated using SoG process.

  • PDF

Frequency Response Analysis of Electrostatic Microactuators (정전형 마이크로 엑츄에이터의 주파수 응답 특성 해석)

  • Min, Dong-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1982-1984
    • /
    • 2002
  • The admittance of one-port electrostatic actuator are modeled using the steady-state sinusoidal response. Also the admittance of the differential type actuator is derived taking the practical conditions into consideration, although it has no admittance in ideal case. It is a function of biasing error, driving error, and capacitive mismatch including parasitic capacitors. The validity of the admittance model is proved by comparing between the modeled and measured admittances. The distortion in the frequency response curve measured by a capacitive sensor is analyzed and it is concluded that the admittance is the main cause of this distortion.

  • PDF

FEA Simulation for Practical Behaviors of Electrostatic Micro Actuator (마이크로 액추에이터의 실제 거동에 대한 FEA 시뮬레이션)

  • Lee Yang Chang;Lee Joon Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.115-121
    • /
    • 2005
  • Micromachines are extremely novel artifacts with a variety of special characteristics. Utilizing their tiny dimensions ranging roughly from 10 to $10^3$ micro-meters, the micromachines can perform tasks in a revolutionary manner that would be impossible for conventional artifacts. Micromachines are in general related to various coupled physical phenomena. They are required to be evaluated and designed considering the coupled phenomena. This paper describes finite element analysis (FEA) simulation of practical behaviors for the micro actuator. Especially, electric field modeling in micro actuators has been generally restricted to in-plane two-dimensional finite element analysis because of the complexity of the micro actuator geometry. However, in this paper, the actual three-dimensional geometry of the micro actuator is considered. The starting torque obtained from the in-plane two-dimensional analytical solutions were compared with that of the actual three-dimensional FE analysis results. The starting torque is proportional to $V^2$, and that the two-dimensional analytical solutions are larger than the three- dimensional FE ones. It is found that the evaluation of micro actuator has to be considered electrical leakage phenomenon.

Electrostatic 2-axis MEMS Stage with a Large Area Platform for Probe-based Storage Devices (대면적 플랫폼을 갖는 Probe-based Storage Device(PSD)용 정전형 2축 MEMS 스테이지)

  • Chung, Il-Jin;Jeon, Jong-Up
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.179-189
    • /
    • 2006
  • Recently the electrostatic 2-axis MEMS stages have been fabricated f3r the purpose of an application to PSD (Probe-based Storage Device). However, all of the components (platform, comb electrodes, springs, anchors, etc.) in those stages are placed in-plane so that they have low areal efficiencies such as a few percentage, which is undesirable as data storage devices. In this paper, we present a novel structure of an electrostatic 2-axis MEMS stage that is characterized by having a large areal efficiency of about 25%. For obtaining large area efficiency, the actuator part consisting of mainly comb electrodes and springs is placed right below the platform. The structure and operational principle of the MEMS stage are described, followed by a design and analysis, the fabrication and measurement results. Experimental results show that the driving ranges of the fabricated stage along the x and y axis were 27$\mu$m, 38$\mu$m at the supplied voltages of 65V, 70V, respectively and the natural frequencies along x and y axis were 180Hz, 310Hz, respectively. The total size of the stage is about 5.9$\times$6.8mm$^2$ and the platform size is about 2.7$\times$3.6mm$^2$.