• Title/Summary/Keyword: Electronic nonequilibrium

Search Result 15, Processing Time 0.022 seconds

Rovibrational Nonequilibrium of Nitrogen Behind a Strong Normal Shock Wave

  • Kim, Jae Gang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.28-37
    • /
    • 2017
  • Recent modeling of thermal nonequilibrium processes in simple molecules like hydrogen and nitrogen has indicated that rotational nonequilibrium becomes as important as vibrational nonequilibrium at high temperatures. In the present work, in order to analyze rovibrational nonequilibrium, the rotational mode is separated from the translational-rotational mode that is usually considered as an equilibrium mode in two- and multi-temperature models. Then, the translational, rotational, and electron-electronic-vibrational modes are considered separately in describing the thermochemical nonequilibrium of nitrogen behind a strong normal shock wave. The energy transfer for each energy mode is described by recently evaluated relaxation time parameters including the rotational-to-vibrational energy transfer. One-dimensional post-normal shock flow equations are constructed with these thermochemical models, and post-normal shock flow calculations are performed for the conditions of existing shock-tube experiments. In comparisons with the experimental measurements, it is shown that the present thermochemical model is able to describe the rotational and electron-electronic-vibrational relaxation processes of nitrogen behind a strong shock wave.

Magnetic Properties of Fe-System Thin Films with Non-equilibrium Phases (비평형 Fe계 박막의 자기 특성)

  • Kim, H.S.;Min, B.K.;Song, J.S.;Oh, Y.W.;Lee, W.J.;Lee, D.Y.;Kim, l.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.13-16
    • /
    • 2000
  • In this study, we have fabricated nonequilibrium $Fe_{85.6}Zr_{3.3}B_{5.7}Ag_{5.4}$ thin film, which contains an additional insoluble element Ag, by using DC magnetron sputtering method. We have investigated the magnetic properties of amorphous $Fe_{85.6}Zr_{3.3}B_{5.7}Ag_{5.4}$ thin film as a function of rotational field annealing(RFA). After deposition, the amorphous $Fe_{85.6}Zr_{3.3}B_{5.7}Ag_{5.4}$ thin film annealed by rotational field annealing method at $350^{\circ}C$ for an hour was founded to have high permeability of 8680 of 100 MHz, 0.2 mOe, low coercivity of 0.86 De and very low core loss of 1.3 W/cc at 1 MHz, 0.1T.

  • PDF

A study on the design of boron diffusion simulator applicable for shallow $p^+-n$ junction formation (박막 $p^+-n$ 접합 형성을 위한 보론 확산 시뮬레이터의 제작에 관한 연구)

  • Kim, Jae-Young;Kim, Bo-Ra;Hong, Shin-Nam
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.30-33
    • /
    • 2004
  • Shallow p+-n junctions were formed by low-energy ion implantation and dual-step annealing processes The dopant implantation was performed into the crystalline substrates using $BF_2$ ions. The annealing was performed with a rapid thermal processor and a furnace. FA+RTA annealing sequence exhibited better junction characteristics than RTA+FA thermal cycle from the viewpoint of junction depth. A new simulator is designed to model boron diffusion in silicon, which is especially useful for analyzing the annealing process subsequent to ion implantation. The model which is used in this simulator takes into account nonequilibrium diffusion, reactions of point defects, and defect-dopant pairs considering their charge states, and the dopant inactivation by introducing a boron clustering reaction. Using a resonable parameter values, the simulator covers not only the equilibrium diffusion conditions but also the nonequilibrium post-implantation diffusion. Using initial conditions and boundary conditions, coupled diffusion equation is solved successfully. The simulator reproduced experimental data successfully.

  • PDF

Effect of Dielectric Materials on the Silent Discharge Characteristics for Ozone Generation (오존발생을 위한 무성방전특성에 미치는 유전체의 영향)

  • 박명하;곽동주
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.628-630
    • /
    • 2000
  • Since the concept for the ozone generation using a nonequilibrium electric discharge techniques had been proposed by Siemens, some experimental and theoretical studies on the ozone generation by streamer corona discharge, surface discharge and silent discharge have been performed. In this paper some results on the discharge characteristics of the silent discharge gap with various dielectric materials were reported. Dielectric materials used in this study were pyrex glass, quartz and glass beefs with diameter of 1 mm.

  • PDF

Effect of nitrogen doping and hydrogen confinement on the electronic properties of a single walled carbon nanotube

  • Bhat, Bashir Mohi Ud Din;Dar, Jehangir Rashid;Sen, Pratima
    • Carbon letters
    • /
    • v.17 no.1
    • /
    • pp.29-32
    • /
    • 2016
  • This paper addresses the effect of dopants on the electronic properties of zigzag (8, 0) semiconducting single walled carbon nanotubes (SWCNTs), using extended Hückel theory combined with nonequilibrium Green’s function formalism. Through appropriate dopant concentrations, the electronic properties of SWCNTs can be modified. Within this context, we present our ongoing investigation on (8, 0) SWCNTs doped with nitrogen. Quantum confinement effects on the electronic properties of the SWCNTs have also been investigated. The obtained results reveal that the electronic properties of SWCNTs are strongly dependent on the dopant concentration and modification of electronic structures by hydrogen confinement.

First-principles Calculations of the Phonon Transport in Carbon Atomic Chains Based on Atomistic Green's Function Formalism

  • Kim, Hu Sung;Park, Min Kyu;Kim, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.425.1-425.1
    • /
    • 2014
  • Thermal transport in nanomaterials is not only scientifically interesting but also technological important for various future electronic, bio, and energy device applications. Among the various computation approaches to investigate lattice thermal transport phenomena in nanoscale, the atomistic nonequilibrium Green's function approach based on first-principles density functional theory calculations appeared as a promising method given the continued miniaturization of devices and the difficulty of developing classical force constants for novel nanoscale interfaces. Among the nanometerials, carbon atomic chains, namely the cumulene (all-doulble bonds, ${\cdots}C=C=C=C{\cdots}$) and polyyne (alternation of single and triple bonds, ${\cdots}C{\equiv}C-C{\equiv}C{\cdots}$) can be considered as the extream cases of interconnction materials for nanodevices. After the discovery and realization of carbon atomic chains, their electronic transport properties have been widely studied. For the thermal transport properties, however, there have been few literatures for this simple linear chain system. In this work, we first report on the development of a non-equilibrium Green's function theory-based computational tool for atomistic thermal transport calculations of nanojunctions. Using the developed tool, we investigated phonon dispersion and transmission properties of polyethylene (${\cdots}CH2-CH2-CH2-CH2{\cdots}$) and polyene (${\cdots}CH-CH-CH-CH{\cdots}$) structures as well as the cumulene and polyyne. The resulting phonon dispersion from polyethylene and polyene showed agreement with previous results. Compared to the cumulene, the gap was found near the ${\Gamma}$ point of the phonon dispersion of polyyne as the prediction of Peierls distortion, and this feature was reflected in the phonon transmission of polyyne. We also investigated the range of interatomic force interactions with increase in the size of the simulation system to check the convergence criteria. Compared to polyethylene and polyene, polyyne and cumulene showed spatially long-ranged force interactions. This is reflected on the differences in phonon transport caused by the delicate differences in electronic structure.

  • PDF

Exhaust Plasma Characteristics of Direct-Current Arcjet Thrusters

  • Tahara, Hirokazu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.327-334
    • /
    • 2004
  • Spectroscopic and electrostatic probe measurements were made to examine plasma characteristics with or without a metal plate for a 10-㎾-class direct-current arcjet Heat fluxes into the plate from the plasma were also evaluated with a Nickel slug and thermocouple arrangement. Ammonia and mixtures of nitrogen and hydrogen were used. The NH$_3$ and $N_2$+3H$_2$ plasmas in the nozzle and in the downstream plume without a plate were in thermodynamical nonequilibrium states. As a result, the H-atom electronic excitation temperature and the $N_2$ molecule-rotational excitation temperature intensively decreased downstream in the nozzle although the NH molecule-rotational excitation temperature did not show an axial decrease. Each temperature was kept in a small range in the plume without a plate except for the NH rotational temperature for NH$_3$ gas. On the other hand, as approaching the plate, the thermodynamical nonequilibrium plasma came to be a temperature-equilibrium one because the plasma flow tended to stagnate in front of the plate. The electron temperature had a small radial variation near the plate. Both the electron number density and the heat flux decreased radially outward, and an increase in H$_2$ mole fraction raised them at a constant radial position. In cases with NH$_3$ and $N_2$+3H$_2$ a large number of NH radical with a radially wide distribution was considered to cause a large amount of energy loss, i.e., frozen flow loss, for arcjet thrusters.

  • PDF

Electrical and Optical Properties of Microwave Discharged Lamp (마이크로파 방전램프의 전기적/광학적 특성)

  • Lee, Jong-Chan;Hwang, Myung-Keun;Bae, Young-Jin;Her, Hyun-Soo;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.492-494
    • /
    • 2002
  • The fundamental principles of the operation of microwave discharges that are used to convert microwave energy to broad spectrum visual light are known. In this paper, emission dependance of microwave discharges in mixture content of sulfur with noble gases was studied. It is shown that the excitation of this gaseous mixture is carried out in two phases: (1) ionization of noble gas atoms by a microwave field and (2) the consequent maintenance of slightly ionized nonequilibrium plasma by the field. These two processes have essentially various thresholds for the microwave pump. The purpose of this work is to investigate spectral properties of the high frequency discharges in a mixture sulfur vapors with noble gases.

  • PDF

Shallow P+-n Junction Formation and the Design of Boron Diffusion Simulator (박막 P+-n 접합 형성과 보론 확산 시뮬레이터 설계)

  • 김재영;이충근;김보라;홍신남
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.708-712
    • /
    • 2004
  • Shallow $p^+-n$ junctions were formed by ion implantation and dual-step annealing processes. The dopant implantation was performed into the crystalline substrates using BF$_2$ ions. The annealing was performed with a rapid thermal processor and a furnace. FA+RTA annealing sequence exhibited better junction characteristics than RTA+FA thermal cycle from the viewpoint of junction depth and sheet resistance. A new simulator is designed to model boron diffusion in silicon. The model which is used in this simulator takes into account nonequilibrium diffusion, reactions of point defects, and defect-dopant pairs considering their charge states, and the dopant inactivation by introducing a boron clustering reaction. Using initial conditions and boundary conditions, coupled diffusion equations are solved successfully. The simulator reproduced experimental data successfully.

Optical Properties of Sulfur and NaI by Microwave Discharge (마이크로파 방전에 의한 Sulfur와 NaI의 광학적 특성)

  • Lee, Jong-Chan;Hwang, Myung-Keun;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.109-111
    • /
    • 2002
  • The fundamental principles of the operation of microwave discharges that are used to convert microwave energy to broad spectrum visual light are known. In this paper, emission dependance of microwave discharges in mixture content of sulfur with noble gases was studied. It is shown that the excitation of this gaseous mixture is carried out in two phases; (1) ionization of noble gas atoms by a microwave field and (2) the consequent maintenance of slightly ionized nonequilibrium plasma by the field. These two processes have essentially various thresholds for the microwave pump. The purpose of this work is to investigate spectral properties of the high frequency discharges in a mixture sulfur vapors with noble gases.

  • PDF