Browse > Article
http://dx.doi.org/10.5714/CL.2016.17.1.029

Effect of nitrogen doping and hydrogen confinement on the electronic properties of a single walled carbon nanotube  

Bhat, Bashir Mohi Ud Din (Nanomaterial Research Laboratory, Department of Physics, Govt. Degree College for Women)
Dar, Jehangir Rashid (Nanomaterial Research Laboratory, Department of Physics, Govt. Degree College for Women)
Sen, Pratima (Nanomaterial Research Laboratory, Department of Physics, Govt. Degree College for Women)
Publication Information
Carbon letters / v.17, no.1, 2016 , pp. 29-32 More about this Journal
Abstract
This paper addresses the effect of dopants on the electronic properties of zigzag (8, 0) semiconducting single walled carbon nanotubes (SWCNTs), using extended Hückel theory combined with nonequilibrium Green’s function formalism. Through appropriate dopant concentrations, the electronic properties of SWCNTs can be modified. Within this context, we present our ongoing investigation on (8, 0) SWCNTs doped with nitrogen. Quantum confinement effects on the electronic properties of the SWCNTs have also been investigated. The obtained results reveal that the electronic properties of SWCNTs are strongly dependent on the dopant concentration and modification of electronic structures by hydrogen confinement.
Keywords
Nitrogen doping; Hydrogen confinement; Single walled carbon nanotube;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tasis D, Tagmatarchis N, Bianco A, Prato M. Chemistry of carbon nanotubes. Chem Rev, 106, 1105 (2006). http://dx.doi.org/10.1021/cr050569o.   DOI
2 Zhao YL, Stoddart JF. Noncovalent functionalization of single-walled carbon nanotubes. Acc Chem Res, 42, 1161 (2009). http://dx.doi.org/10.1021/ar900056z.   DOI
3 Khabashesku VN, Billups WE, Margrave JL. Fluorination of single-wall carbon nanotubes and subsequent derivatization reactions. Acc Chem Res, 35, 1087 (2002). http://dx.doi.org/10.1021/ar020146y.   DOI
4 Niyogi S, Hamon MA, Hu H, Zhao B, Bhowmik P, Sen R, Itkis ME, Haddon RC. Chemistry of single-walled carbon nanotubes. Acc Chem Res, 35, 1105 (2002). http://dx.doi.org/10.1021/ar010155r.   DOI
5 Banerjee S, Hemraj-Benny T, Wong SS. Covalent surface chemistry of single-walled carbon nanotubes. Adv Mater, 17, 17 (2005). http://dx.doi.org/10.1002/adma.200401340.   DOI
6 Britz DA, Khlobystov AN. Noncovalent interactions of molecules with single walled carbon nanotubes. Chem Soc Rev, 35, 637 (2006). http://dx.doi.org/10.1039/b507451g.   DOI
7 Bezryadin A, Verschueren ARM, Tans SJ, Dekker C. Multiprobe transport experiments on individual single-wall carbon nanotubes. Phys Rev Lett, 80, 4036 (1998). http://dx.doi.org/10.1103/physrevlett.80.4036.   DOI
8 Kumar R, Kaur K, Lamba V, Engles D. Modeling the doping effect in carbon nanotubes for enhanced conductance. Proceedings of International Conference on Advanced Nanomaterials and Emerging Engineering Technologies, Chennai, 221 (2013). http://dx.doi.org/10.1109/icanmeet.2013.6609282.
9 Kong J, Zhou C, Yenilmez E, Dai H. Alkaline metal-doped n-type semiconducting nanotubes as quantum dots. Appl Phys Lett, 77, 3977 (2000). http://dx.doi.org/10.1063/1.1331088.   DOI
10 Martel R, Schmidt T, Shea HR, Hertel T, Avouris P. Single- and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett, 73, 2447 (1998). http://dx.doi.org/10.1063/1.122477.   DOI
11 Reed MA, Lee T. Molecular Nanoelectronics. American Scientific Publishers, Stevenson Ranch, CA (2003).
12 Datta S. Nanoscale device modeling: the Green’s function method. Superlattices Microstruct, 28, 253 (2000). http://dx.doi.org/10.1006/spmi.2000.0920.   DOI
13 Kienle D, Bevan KH, Liang GC, Siddiqui L, Cerda JI, Ghosh AW. Extended Hückel theory for band structure, chemistry, and transport: II. Silicon. J Appl Phys, 100, 043715 (2006). http://dx.doi.org/10.1063/1.2259820.   DOI
14 Atomistix ToolKit version 13.8.1. Available from: www.quantumwise.com.
15 Mowbray DJ, Morgan C, Thygesen KS. Influence of O2 and N2 on the conductivity of carbon nanotube networks. Phys Rev B, 79, 195431 (2009). http://dx.doi.org/10.1103/physrevb.79.195431.   DOI
16 Maeda Y, Kimura SI, Kanda M, Hirashima Y, Hasegawa T, Wakahara T, Lian Y, Nakahodo T, Tsuchiya T, Akasaka T, Lu J, Zhang X, Gao Z, Yu Y, Nagase S, Kazaoui S, Minami N, Shimizu T, Tokumoto H, Saito R. Large-scale separation of metallic and semiconducting single-walled carbon nanotubes. J Am Chem Soc, 127, 10287 (2005). http://dx.doi.org/10.1021/ja051774o.   DOI