• Title/Summary/Keyword: Electronic instrument

Search Result 302, Processing Time 0.025 seconds

Implant Anneal Process for Activating Ion Implanted Regions in SiC Epitaxial Layers

  • Saddow, S.E.;Kumer, V.;Isaacs-Smith, T.;Williams, J.;Hsieh, A.J.;Graves, M.;Wolan, J.T.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.4
    • /
    • pp.1-6
    • /
    • 2000
  • The mechanical strength of silicon carbide dose nor permit the use of diffusion as a means to achieve selective doping as required by most electronic devices. While epitaxial layers may be doped during growth, ion implantation is needed to define such regions as drain and source wells, junction isolation regions, and so on. Ion activation without an annealing cap results in serious crystal damage as these activation processes must be carried out at temperatures on the order of 1600$^{\circ}C$. Ion implanted silicon carbide that is annealed in either a vacuum or argon environment usually results in a surface morphology that is highly irregular due to the out diffusion of Si atoms. We have developed and report a successful process of using silicon overpressure, provided by silane in a CAD reactor during the anneal, to prevent the destruction of the silicon carbide surface, This process has proved to be robust and has resulted in ion activation at a annealing temperature of 1600$^{\circ}C$ without degradation of the crystal surface as determined by AFM and RBS. In addition XPS was used to look at the surface and near surface chemical states for annealing temperatures of up to 1700$^{\circ}C$. The surface and near surface regions to approximately 6 nm in depth was observed to contain no free silicon or other impurities thus indicating that the process developed results in an atomically clean SiC surface and near surface region within the detection limits of the instrument(${\pm}$1 at %).

  • PDF

Normative Data of The Finger Strength Measured by Keyboard Playing with MIDI : Focusing on Adults (일반 성인의 키보드 연주 손가락 타력 MIDI 표준치 연구)

  • Han, Inhee;Kim, Soo Ji
    • Journal of Music and Human Behavior
    • /
    • v.10 no.2
    • /
    • pp.79-97
    • /
    • 2013
  • The purpose of this study was to obtain the normative data of finger strength using the keyboard and the MIDI(Musical Instrument Digital Interface) software. A total of 92 college students (46 male and 46 female) were recruited from universities located in Seoul and Chungcheong province and an average age was 21.7(SD = 1.8). After the completion of demographic information, each participant asked to press the five keys both in ascending and descending manners with the maximum strength of individual finger. The velocity was obtained as an indicator for finger pressing force by using the MIDI software. Results showed that the individual finger velocity ranged between 77 to 97 (Maximum possible velocity = 127). Regarding male's velocity data, the maximum velocity was found in index finger of dominant hand(96.9), while the minimum strength was found in ring finger of nondominant hand(78.5). Female data appeared to be similar to male's one in terms of maximum strength in dominant index finger(92) and minimum strength in nondominant ring finger(77.5). It also found that the statistically significant differences(p < .05) on finger strength of all fingers between dominant and non-dominant hands except the thumbs(p < .05). The current findings serves as a "normative standard" that proves the validity and effectiveness of hand rehabilitation training program using the electronic keyboard connected with the MIDI software to enhance functional changes in hands.

The Level of Fatigue and Motor Performance During Drum Playing Depending on Co-Presence of Singing Tasks in Patients With Chronic Stroke (전자 드럼 연주 시 노래부르기 유무에 따른 만성 뇌졸중 환자의 피로도 및 운동 수행력 비교)

  • Kim, Hyun Ji
    • Journal of Music and Human Behavior
    • /
    • v.14 no.2
    • /
    • pp.71-90
    • /
    • 2017
  • The purpose of this study was to compare immediate differences in fatigue and motor performance during instrumental playing in patients with chronic stroke depending on whether singing task was concurrently presented. A total of 12 patients with chronic stroke were recruited from community and daycare centers for older adults in Seoul. Six subjects were randomly assigned to the experimental group and six to the comparison group. The experimental group was asked to sing while playing the electronic drum, and the comparison group only played the drum. The results of this study showed that statistically significant differences in perceived fatigue and exertion were found between the two groups, while no significant group differences were found in level of engagement in playing or force of tapping during drum playing. This study supports the inclusion of a singing task in instrument playing rehabilitation to effectively decrease perceived fatigue and level of intensity of exercises, although this may not lead to immediate changes in motor function or level of target exercises. The results indicate that singing while instrument playing may help stroke patients shift their attention from the executed motor movements to singing and alleviate the attentional and emotional load from intense movements. This study presents implications for how to select and pattern target movements in music therapy intervention for better motor outcomes.

Discrimination of Korean Tobacco's Aroma and Tastes using the Eloctronic Nose/Tongue and Their feasibility in Tobacco Sensory Evaluation

  • Lee Whan-Woo;Lee Seung-Yong;Shon Hyun-Joo;Kim Young-Hoh
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.27 no.1 s.53
    • /
    • pp.134-140
    • /
    • 2005
  • The purpose of this study was the discrimination of different tobacco types by the E-Nose/tongue and the analysis of what human sensory attributes are correlated with e-instrument's sensors. Samples were made from five groups of Korean domestic tobacco leaves, aged burley and not aged, aged flue-cured and not aged and blending types of the four. Instrumental tests were conducted to discriminate characteristics among different tobacco samples by the E-Nose and the E-Tongue. Sensory attributes of tobacco tastes were impact, irritation, bitterness, hay-like, tobacco taste, smoke volume, smoke pungent and mouth cleanness. STATISTICA software was used to analyze correlation between the human sensory data and the raw data of e-instruments. Discrimination analysis can be achieved using principal components analysis (PCA) and discriminant factorial analysis(DFA). As a result, impact, bitterness, irritation, smoke volume and smoke pungent of human sensory attributes were correlated with data from the several clustered E-Nose sensors(p < 0.10). And bitterness, irritation, and smoke pungent of human sensory attributes were correlated with data from the E-Tongue sensors(p < 0.10). PCA plot by the E-Nose shows that aged tobacco and not aged were discriminated and DFA plot shows that three groups(aged burley, not aged burley and flue-cured) were discriminated. PCA plot by the E- Tongue shows that flue-cured tobacco was separated from burley. Our results indicated that the e-instruments are sensitive enough to distinguish among tobacco types and their several sensors are reacted to the human sensory attributes.

Estimation of Time Difference Using Cross-Correlation in Underwater Environment (수중 환경에서 상호상관을 이용한 시간차이 추정)

  • Lee, Young-Pil;Moon, Yong Seon;Ko, Nak Yong;Choi, Hyun-Taek;Lee, Jeong-Gu;Bae, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.2
    • /
    • pp.155-160
    • /
    • 2016
  • Recently, underwater acoustic communication (UWAC) has been studied by many scholars and researchers. In order to use UWAC, we need to estimate time difference between the two signals in underwater environment. Typically, there are major three methods to estimate the time-difference between the two signals such as estimating the arrival time of the first non-background segment and calculate the temporal difference, calculating the cross-correlation between the two signal to infer the time-lagged, and estimating the phase delay to infer the time difference. In this paper, we present calculating the cross-correlation between the two signals to infer the time-lagged to apply UWAC. We also present the experimental result of estimating the arrival time by using cross-correlation. We get EXCORR = 0.003055 second as the estimation error in mean absolute difference.

Development of Highly Reliable Power and Communication System for Essential Instruments Under Severe Accidents in NPP

  • Choi, Bo Hwan;Jang, Gi Chan;Shin, Sung Min;Lee, Soo Ill;Kang, Hyun Gook;Rim, Chun Taek
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1206-1218
    • /
    • 2016
  • This article proposes a highly reliable power and communication system that guarantees the protection of essential instruments in a nuclear power plant under a severe accident. Both power and communication lines are established with not only conventional wired channels, but also the proposed wireless channels for emergency reserve. An inductive power transfer system is selected due to its robust power transfer characteristics under high temperature, high pressure, and highly humid environments with a large amount of scattered debris after a severe accident. A thermal insulation box and a glass-fiber reinforced plastic box are proposed to protect the essential instruments, including vulnerable electronic circuits, from extremely high temperatures of up to $627^{\circ}C$ and pressure of up to 5 bar. The proposed wireless power and communication system is experimentally verified by an inductive power transfer system prototype having a dipole coil structure and prototype Zigbee modules over a 7-m distance, where both the thermal insulation box and the glass-fiber reinforced plastic box are fabricated and tested using a high-temperature chamber. Moreover, an experiment on the effects of a high radiation environment on various electronic devices is conducted based on the radiation test having a maximum accumulated dose of 27 Mrad.

Multidrop Ethernet based IoT Architecture Design for VLBI System Control and Monitor (VLBI 시스템 제어 및 모니터를 위한 멀티드롭 이더넷 기반 IoT 아키텍처 설계)

  • Song, Min-Gyu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1159-1168
    • /
    • 2020
  • In the past, control and monitor of a large number of instruments is a specialized area, which requires an expensive dedicated module to implement. However, with the recent development of embedded technology, various products capable of performing M&C (Monitor and Control) have been released, and the scope of application is expanding. Accordingly, it is possible to more easily build a small M&C environment than before. In this paper, we discussed a method to replace the M&C of the VLBI system, which had to be implemented through a specialized hardware product, with an inexpensive general imbeded technology. Memory based data transmission, reception and storage is a technology that is already generalized not only in VLBI but also in the network field, and more effective M&C can be implemented when some items of Ethernet are optimized for the VLBI (Very Long Baseline Interferometer) system environment. In this paper, we discuss in depth the design and implementation for the multidrop based IoT architecture.

Implementation of a Sensor to Detect the Foot-pushing Force for an Agricultural Transport-convenience Vehicle (농업용 이동편의장치를 위한 발로 미는 힘을 감지하는 센서 구현)

  • Seung-hee, Baek;Ik-hyun, Kwon;Cheong-worl, Kim
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.411-417
    • /
    • 2022
  • In this paper, we propose a sensor with a C-shaped load cell to detect force change when a person sitting on the chair in an electrical transport-convenience vehicle is pushing ground by both heels. The load cell built in the vehicle is mechanically deformed by the vertical force owing to the human weight and the horizontal force by ground-pushing feet. The deformation rate of the load cell and its distribution are simulated using finite element analysis. In the simulation, the applied loads are preset in the range of 10 kg - 100 kg with a step size of 10 kg, and the ground-pushing force by feet is increased to 40 N with a step size of 5 N with respect to each applied load level. The resistance change of the load cell was observed to be linear in simulation as well as in measurement. the maximum difference between simulation and measurement was 0.89 % when the strain gauge constant was 2.243. The constant has a large influence on the difference. The proposed sensor was fabricated by connecting an instrument amplifier and a microcontroller to a load cell and used to detect the force by ground-pushing feet. To detect foot driving, the reference signal was set to 130% of the load, and the duration of the sensor output signal exceeding the reference signal was set to 0.6 s. In a test of a vehicle built with the proposed sensor, the footpushing force by the worker could be successfully detected even when the worker was working.

The Analysis of usage of Symptom Differentiation in Clinical Trials in Korean Medicine for Cancer Patients (암 환자 대상 한의약 임상시험에서 변증 활용에 대한 분석)

  • Cheon, Chunhoo;Park, Sunju;Jang, Bo-Hyoung;Shin, Yongcheol;Ko, Seong-Gyu
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.61-70
    • /
    • 2015
  • Objective : The aim of this study is to investigate the features of clinical trial which used symptom differentiation on cancer patients Method : Electronic databases including Ovid-Medline, Ovid-EMBASE, and Cochrane library were searched. Search terms incorporating the concepts of cancer, herbal medicine, clinical trial were used. Articles described using symptom differentiation in methods were selected. Results : Twelve studies used symptom differentiation for prescribing herbal medicine to cancer patients. A total of 36 symptom differentiation were used. The kind of the herbal medicines was varied as much as the kind of symptom differentiation. Conclusion : Most of herbal medicines used for cancer patients focused on quality of life or adverse events rather than tumor size. Symptom differentiation and herbal medicine used in selected studies were too diverse to categorize. To use standardized symptom differentiation, symptom differentiation instrument should be developed and reliability test and validity test are needed.

Implementation of Main Computation Board for Safety Improvement of railway system (철도시스템의 안전성 향상을 위한 주연산보드 구현)

  • Park, Joo-Yul;Kim, Hyo-Sang;Lee, Joon-Hwan;Kim, Bong-Taek;Chung, Ki-Seok
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1195-1201
    • /
    • 2011
  • Since the release of safety standard IEC 61508 which defines functional safety of electronic safety-related systems, SIL(Safety Integrity Level) certification for railway systems has gained lots of attention lately. In this paper, we propose a new design technique of the computer board for train control systems with high reliability and safety. The board is designed with TMR(Triple Modular Redundancy) using a certified SIL3 Texas Instrument(TI)'s TMS570 MCU(Micro-Controller Unit) to guarantee safety and reliability. TMR for the control device is implemented on FPGA(Field Programmable Gate Array) which integrates a comparator, a CAN(Controller Area Network) communication module, built-in self-error checking, error discriminant function to improve the reliability of the board. Even if a malfunction of a processing module occurs, the safety control function based on the proposed technique lets the system operate properly by detecting and masking the malfunction. An RTOS (Real Time Operation System) called FreeRTOS is ported on the board so that reliable and stable operation and convenient software development can be provided.

  • PDF