DOI QR코드

DOI QR Code

Multidrop Ethernet based IoT Architecture Design for VLBI System Control and Monitor

VLBI 시스템 제어 및 모니터를 위한 멀티드롭 이더넷 기반 IoT 아키텍처 설계

  • Song, Min-Gyu (Technology Center for Astronomy and Space Science, Korea Astronomy and Space Science Institute)
  • 송민규 (한국천문연구원 천문우주기술센터)
  • Received : 2020.10.31
  • Accepted : 2020.12.15
  • Published : 2020.12.31

Abstract

In the past, control and monitor of a large number of instruments is a specialized area, which requires an expensive dedicated module to implement. However, with the recent development of embedded technology, various products capable of performing M&C (Monitor and Control) have been released, and the scope of application is expanding. Accordingly, it is possible to more easily build a small M&C environment than before. In this paper, we discussed a method to replace the M&C of the VLBI system, which had to be implemented through a specialized hardware product, with an inexpensive general imbeded technology. Memory based data transmission, reception and storage is a technology that is already generalized not only in VLBI but also in the network field, and more effective M&C can be implemented when some items of Ethernet are optimized for the VLBI (Very Long Baseline Interferometer) system environment. In this paper, we discuss in depth the design and implementation for the multidrop based IoT architecture.

기존에 다수의 인스트루먼트에 대한 제어 및 모니터는 전문화된 영역으로 그 구현에 있어 고가의 전용 모듈을 필요로 하였다. 하지만 최근 임베디드 기술의 발전 속에 M&C(Monitor and Control)를 수행할 수 있는 다양한 제품이 출시되고, 적용 범위가 확대되고 있다. 이에 따라 예전에 비해 소규모의 M&C 환경을 보다 손쉽게 구축할 수 있게 되었다. 본 논문에서는 별도의 하드웨어 제품을 통해 구현해야 했던 VLBI 시스템의 M&C를 저렴한 범용 임베디드 기술로 대체할 수 있는 방안에 대해 논하였다. 메모리 기반의 데이터 송수신 그리고 저장은 비단 VLBI 뿐만 아니라 네트워크 분야에서 일반화된 기술이고, 이더넷을 구성하는 일부 아이템을 VLBI(Very Long Baseline Interferometer) 시스템 환경에 맞게 최적화시킬 경우 보다 효과적인 M&C를 구현할 수 있다. 본 논문에서는 이에 대한 시스템 설계 및 구현 방안을 구체화하였다.

Keywords

References

  1. L. Lachello, P. Wratil, A. Meindl, S. Schonegger, B. S. Karunakaran and S. Potier, Industrial Ethernet Facts - The 5 Major Technologies. lobal Positioning Systems, Inertial Navigation, and Integration. Fredersdorf: EPSG, 2013.
  2. M. Rafiquzzaman, Microcontroller Theory and Applications with the PIC18F. Pomona: Wiley, 2018.
  3. D. Ryu, and T. Choi, "Development of the Compact Smart Device for Industrial IoT," J. of the Korea Institute of Electronic Communication Sciences, vol. 13, no. 4, 2018, pp. 751-756. https://doi.org/10.13067/JKIECS.2018.13.4.751
  4. M. Song, D. Je, D. Byun, J. Lee, M. Chung, J. Kang, S. Wi and Y. Kang, "Implementation of Optimized M&C System on Distributed Environment using Profibus," J. of the Korea Institute of Plant Engineering, vol. 17, no. 4, 2012, pp. 135-146.
  5. H. Kim, "A Study on The Real-Time Data Collection/Analysis/Processing Intelligent IoT," J. of the Korea Institute of Electronic Communication Sciences, vol. 14, no. 2, 2019, pp. 317-322. https://doi.org/10.13067/JKIECS.2019.14.2.317
  6. C. Dey, and S. Sen, Industrial Automation Technologies. London: CRC Press, 2020.
  7. D. Kim, and T. Hoa, Industrial Sensors and Controls in Communication Networks. Seoul: Springer, 2019.
  8. B. Forouzan, Data Communications and Networking. New York: McGraw-Hill , 2000.
  9. P. Raimond, and M. Metter, Automating with PROFINET: Industrial communication based on Industrial Ethernet. Erlangen: Wiley, 2008.
  10. D. Molloy, Exploring Raspberry Pi: Interfacing to the Real World with Embedded Linux. Indianapolis: Wiley, 2006.
  11. R. Giladi, Network Processors: Architecture, Programming, and Implementation. Burlington: Morgan Kaufmann, 2008.