• Title/Summary/Keyword: Electronic equipment

Search Result 1,561, Processing Time 0.027 seconds

EFFICIENT THERMAL MODELING IN DEVELOPMENT OF A SPACEBORNE ELECTRONIC EQUIPMENT

  • Kim Jung-Hoon;Koo Ja-Chun
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.270-273
    • /
    • 2004
  • The initial thermal analysis needs to be fast and efficient to reduce the feedback time for the optimal electronic equipment designing. In this study, a thermal model is developed by using power consumption measurement values of each functional breadboard, that is, semi-empirical power dissipation method. In modeling heat dissipated EEE parts, power dissipation is imposed evenly on the EEE part footprint area which is projected to the printed circuit board, and is called surface heat model. The application of these methods is performed in the development of a command and telemetry unit (CTU) for a geostationary satellite. Finally, the thermal cycling test is performed to verify the applied thermal analysis methods.

  • PDF

The effect of Inclined angle of Channel with multi heat source on Thermal Stability of Electronic Equipment (다수의 열원을 가진 채널의 경사각이 전자장비의 열적 안정성에 미치는 영향)

  • 방창훈;김정수;예용택
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.3
    • /
    • pp.12-18
    • /
    • 2001
  • The objective of the present work is to examine the effect of inclined angle of channel with multi heat source on thermal stability of electronic equipment. The heat sources are mounted on both sides of channel walls by two kinds of configuration such as the zig-zag md symmetric on. Conductive heat transfer was estimated by using of thermocouples and heat flux sensor. Thus, convective heat transfer and mean Nusselt number could be obtained. With increased inclined angle, the convective heat transfer coefficient was decreased. When inclined angle was smaller than 30 degree, The average Nusselt number of Big-zag configuration was larger than that of symmetric. Furthermore, when protruding ration was 0.082, the temperature was strongly affected by inclined angle. whereas, when protruding ration was 0.25, the temperature was strongly affected by heat source configuration.

  • PDF

Numerical Study on the Thermal Characteristics of the Various Cooling Methods in Electronic Equipment

  • Son, Young-Seok;Shin, Jee-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.46-55
    • /
    • 2004
  • Thermal characteristics of the various cooling methods in electronic equipment are studied numerically. A common chip cooling system is modeled as a parallel channel with protruding heat sources. A two-dimensional model has been developed for the numerical analysis of compressible. viscous. laminar flow. and conjugate heat transfer between parallel plates with uniform block heat sources. The finite volume method is used to solve this problem. The assembly consists of two channels formed by two covers and one printed circuit board that is assumed to have three uniform heat source blocks. Various cooling methods are considered to find out the efficient cooling method in a given geometry and heat sources. The velocity and the temperature fields. the local temperature distribution along the surface of blocks. and the maximum temperature in each block are obtained. The results are compared to examine the thermal characteristics of the different cooling methods both quantitatively and qualitatively.

A Study on Optimized Thermal Analysis Modeling for Thermal Design Verification of a Geostationary Satellite Electronic Equipment (정지궤도위성 전장품의 열설계 검증을 위한 최적 열해석 모델링 연구)

  • Jun Hyoung Yoll;Yang Koon-Ho;Kim Jung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.4 s.235
    • /
    • pp.526-536
    • /
    • 2005
  • A heat dissipation modeling method of EEE parts, or semi-empirical heat dissipation method, is developed for thermal design and analysis an electronic equipment of geostationary satellite. The power consumption measurement value of each functional breadboard is used for the heat dissipation modeling method. For the purpose of conduction heat transfer modeling of EEE parts, surface heat model using very thin ignorable thermal plates is developed instead of conventional lumped capacity nodes. The thermal plates are projected to the printed circuit board and can be modeled and modified easily by numerically preprocessing programs according to design changes. These modeling methods are applied to the thermal design and analysis of CTU (Command and Telemetry Unit) and verified by thermal cycling and vacuum tests.

Evaluating Accuracy according to the Evaluator and Equipment Using Electronic Apex Locators

  • Yu, Beom-Young;Son, Keunbada;Lee, Kyu-Bok
    • Journal of Korean Dental Science
    • /
    • v.13 no.2
    • /
    • pp.52-58
    • /
    • 2020
  • Purpose: Using two types of electronic apex locators, this study aimed to investigate the differences in accuracy according to the evaluator and equipment. Materials and Methods: Artificial teeth of the lower first premolars and two mandibular acrylic models (A and B) were used in this study. In the artificial teeth, the pulp chamber was opened and the access cavity was prepared. Using calibrated digital Vernier calipers, the distance from the top of the cavity and the root apex was measured to assess the actual distance between two artificial teeth. The evaluation was conducted by 20 dentists, and each evaluator repeated measurements for each electronic apex locator five times. The difference between the actual distance from the top of the cavity to the root apex and the distance measured using electronic measuring equipment was compared. For statistical analysis, the Friedman test the Mann-Whitney U-test were conducted and the differences between groups were analyzed (α=0.05). Result: As for the accuracy of measurement according to the two types of electronic apex locators, the value of the measurement error was 0.4753 mm in Dentaport ZX and 0.3321 mm in E-Cube Plus. Moreover, electronic apex locators Dentaport ZX and E-Cube Plus showed statistically significant differences (P<0.05). As for the difference in the accuracy of the two types of electronic apex locators according to the evaluator, the resulting values differed depending on the evaluator and showed a statistically significant difference (P<0.001). Conclusion: Electronic apex locator E-Cube Plus showed higher accuracy than did Dentaport ZX. Nevertheless, both types of electronic apex locators showed 100% accuracy in finding the region within root apex ±0.5 mm zone. Furthermore, according to the evaluator, the two electronic apex locators showed different resulting values.

A Study on Alternative Fan Selection and Verification in Military Electronic Equipment (방산용 전자장비의 팬 선정 및 검증에 관한 연구)

  • Jin, Sung Eun;Kim, Hwan Gu;Yoon, Eui Youl;Jeon, Hee Ho;Kim, Seung Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1091-1097
    • /
    • 2017
  • Sales of commercial-type cooling fans intended for application in military electronics are often discontinued during equipment production. This results in requirements for alternative fan selection as well as equipment performance and reliability tests, such as high-temperature operation testing. This study deals with alternative fan selection and verification methods that can be used during the production process. First, an alternative fan was selected by calculating the flow and pressure required to effectively cool the equipment, then the feasibility of the selected fan was verified using a reliable CFD heat dissipation analysis model. Following this, a high-temperature operation test was performed using the alternative fan in the equipment. Results demonstrated that the equipment satisfied its required function in a high-temperature environment, and the main parts as well as internal air temperature were found to be thermally stable.

A Study on Guarding Security Portion in Protecting Operation and Application of Electronic Security (경호업무의 경비영역과 기계경비의 적용 방안)

  • Chung, Tae-Hwang
    • Korean Security Journal
    • /
    • no.4
    • /
    • pp.319-341
    • /
    • 2001
  • Most of protecting security activity is carried out by manpower partly by security equipment. The protecting security market and the area of protecting security activity is increasing in spite of change of economic and social environment situation. For more effective protecting security activity, the coordination of electronic equipment and manpower is required. So some application method is suggested throughout the thesis, which is especially focused on new approaching method. The integration of intrusion detecting system, C.C.TV system and Access control system is introduced for general application in chapter III, and some application systems are proposed for protecting security activity in chapter IV. But the security equipment is only aid for manpower, so manpower and equipment should be coordinated well.

  • PDF

Geometric structure and electronic behavior of Rh decorating effect on zigzag CNTs (n=7-12): A DFT study

  • Cui, Hao;Zhang, Xiaoxing;Zhou, Yongjian;Zhang, Jun
    • Carbon letters
    • /
    • v.26
    • /
    • pp.61-65
    • /
    • 2018
  • Comprehensive calculations of the Rh decoration effect on zigzag CNTs with n ranging from 7 to 12 were conducted in this work to understand the effect of Rh doping on geometric structures and electronic behaviors upon metallic and semiconducting CNTs. The obtained results indicated that Rh dopant not only contributes to the deformation of C-C bonds on the sidewall of CNTs, but also transforms the electron distribution of related complexes, thereby leading to a remarkable increase of the conductivity of pure CNTs given the emerged novel state within the energy gap for metallic CNTs and the narrowed energy gap for semiconducting CNTs. Our calculations will be meaningful for exploiting novel CNT-based materials with better sensitivity to electrons and higher electrical conductivity compared with pure CNTs.

Vibration Characteristics Analysis of the Communication Satellite Transponder Equipment (통신위성 중계기 부품의 진동특성 해석)

  • 김현수;이명규;박종흥;김성종;이영신
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.374-379
    • /
    • 2001
  • The satellite electronic equipment is exposed to high level random vibration environment during the launch of spacecraft. The random vibration can cause damage of electronic equipment. Thus very careful consideration on the launch environment, especially for high level random vibration, is required in the design stage of transponder equipments of communication satellite. For the structural integrity of the communication satellite transponder equipment under qualification level random vibration, Finite Element analysis was carried out using the commercial code, MSC/Nastran and ANSYS and stress levels are presented. In order to validate the femodel, modal test was also performed and compared with numerical results.

  • PDF

A Study on the Diagnostic Algorithm for Arc Flash of Power Equipment (전력기기의 아크 플래시 진단 알고리즘에 관한 연구)

  • Lee, Deok-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.7
    • /
    • pp.449-453
    • /
    • 2016
  • The amount of electrical energy has been increased with the rapid development of the industrial society. Accordingly, operating voltage of the power equipment and facility capacity are continuously increasing. Development trends of recent high-voltage electrical equipment are ultra high-voltage, large-capacity and compact. Early diagnosis of a failure of the power plant has been emerging as an important task as to supply high quality power to users. In this study, we have tried to develope an algorithm for distinguishing an arc fault signal generated in the power plant by using UV sensor.