• Title/Summary/Keyword: Electronic devices

Search Result 4,580, Processing Time 0.049 seconds

Analysis of Temperature Effects on Raman Silicon Photonic Devices

  • Kim, Won-Chul;Park, Dong-Wook
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.288-297
    • /
    • 2008
  • Recent research efforts on study of silicon photonics utilizing stimulated Raman scattering have largely overlooked temperature effects. In this paper, we incorporated the temperature dependences into the key parameters governing wave propagation in silicon waveguides with Raman gain and investigated how the temperature affects the solution of the coupled-mode equations. We then carried out, as one particular application example, a numerical analysis of the performance of wavelength converters based on stimulated Raman scattering at temperatures ranging from 298 K to 500 K. The analysis predicted, among other things, that the wavelength conversion efficiency could decrease by as much as 12 dB at 500 K in comparison to that at the room temperature. These results indicate that it is necessary to take a careful account of temperature effects in designing, fabricating, and operating Raman silicon photonic devices.

Design of Over Current Sequence Control Algorithm According to Lithium Battery Fuse Temperature Compensation (리튬 배터리 퓨즈 온도 보상에 따른 과전류 시퀀스 제어 알고리즘 설계)

  • Song, Jung-Yong;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.1
    • /
    • pp.58-63
    • /
    • 2019
  • Lithium-ion batteries used for IT, automobiles, and industrial energy-storage devices have battery management systems (BMS) to protect the battery from abnormal voltage, current, and temperature environments, as well as safety devices like, current interruption device (CID), fuse, and vent to obtain positive temperature coefficient (PTC). Nonetheless, there are harmful to human health and property and damage the brand image of the manufacturer because of smoke, fire, and explosion of lithium battery packs. In this paper, we propose a systematic protection algorithm combining battery temperature, over-current, and interconnection between protection elements to prevent copper deposition, internal short circuit, and separator shrinkage due to frequent and instantaneous over-current discharges. The parameters of the proposed algorithm are suggested to utilize the experimental data in consideration of battery pack operating conditions and malicious conditions.

Dislocation Analysis of CVD Single Crystal Diamond Using Synchrotron White Beam X-Ray Topography (가속기 백색광 X-Ray Topography를 이용한 CVD 단결정 다이아몬드 내부 전위 분석)

  • Yu, Yeong-Jae;Jeong, Seong-Min;Bae, Si-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.3
    • /
    • pp.192-195
    • /
    • 2019
  • Single-crystal diamond obtained by chemical vapor deposition (CVD) exhibits great potential for use in next-generation power devices. Low defect density is required for the use of such power devices in high-power operations; however, plastic deformation and lattice strain increase the dislocation density during diamond growth by CVD. Therefore, characterization of the dislocations in CVD diamond is essential to ensure the growth of high-quality diamond. In this work, we analyze the characteristics of the dislocations in CVD diamond through synchrotron white beam X-ray topography. In estimate, many threading edge dislocations and five mixed dislocations were identified over the whole surface.

Multifunctional Transdermal Diffusion Test System (다기능 경피 확산 테스트 시스템 설계 및 제작)

  • Gao, Mengyan;Jin, Hu;Piao, Xiang Fan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.8-15
    • /
    • 2020
  • The diffusion cell method is the main technique employed for the in vitro diffusion test of transdermal drug delivery preparations. Most existing transdermal diffusion devices use a water bath heating structure and direct current motor magnetic stirrer. However, these devices are confronted with problems, such as large volume, incompatible vertical and horizontal diffusion cells, few diffusion cell sets, and poor reliability. To overcome these deficiencies, the system adopts a dry heating method and uses a rotating magnetic field generated by the electromagnetic stirrer to drive the magnetic stirrer. Accordingly, the resulting device is characterized by a simple structure and small volume, convenient operation, compatible vertical and horizontal diffusion cells, and numerous diffusion cell sets. The reliability and practicability of the system is verified by the in vitro percutaneous permeability test of the bisoprolol patch.

Design and Implementation of Image Segmentation Tx/Rx Technology Based On BLE(Bluetooth Low Energy) Multiple Access Technology for Image Block Devices (이미지 블록 디바이스를 위한 BLE 다중 접속기술 기반 이미지 분할 송수신 기술의 설계 및 구현)

  • Kwak, Chang-Sub;Lee, Young-Soon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.6
    • /
    • pp.825-837
    • /
    • 2021
  • The Bluetooth Low Energy profile has the advantage of continuing wireless communication with very little power consumption compared to the existing Bluetooth, so it is widely applied to smart devices. Most of them are applied to Point-to-Point (1:1) communication between Central (Master) and Peripheral (Slave), but can be applied to Point-to-Multiple (1:N) wireless communication through the use of multiple threads and timers. Therefore, in this paper, a precise timer was designed in the BLE profile to devise an image segmentation transmission/reception structure based on multiple access, and a smart image block device applied to it was designed and verified.

Modelling of Optimum Design of High Vacuum System for Plasma Process

  • Kim, Hyung-Taek
    • International journal of advanced smart convergence
    • /
    • v.10 no.1
    • /
    • pp.159-165
    • /
    • 2021
  • Electronic devices used in the mobile environments fabricated under the plasma conditions in high vacuum system. Especially for the development of advanced electronic devices, high quality plasma as the process conditions are required. For this purpose, the variable conductance throttle valves for controllable plasma employed to the high vacuum system. In this study, we analyzed the effects of throttle valve applications on vacuum characteristics simulated to obtain the optimum design modelling for plasma conditions of high vacuum system. We used commercial simulator of vacuum system, VacSim(multi) on this study. Reliability of simulator verified by simulation of the commercially available models of high vacuum system. Simulated vacuum characteristics of the proposed modelling agreed with the observed experimental behaviour of real systems. Pressure limit valve and normally on-off control valve schematized as the modelling of throttle valve for the constant process-pressure of below 10-3 torr. Simulation results plotted as pump down curve of chamber, variable valve conductance and conductance logic of throttle valve. Simulated behaviors showed the applications of throttle valve sustained the process-pressure constantly, stably, and reliably in plasma process.

A Review on Thermoelectric Technology: Conductive Polymer Based Thermoelectric Materials

  • Park, Dabin;Kim, Jooheon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.3
    • /
    • pp.203-214
    • /
    • 2022
  • Thermoelectric (TE) heating and cooling devices, which are able to directly convert thermal energy into electrical energy and vice versa, are effective and have exhibited a potential for energy harvesting. With the increasing consumer demands for various wearable electronics, organic-based TE composite materials offer a promise for the TE devices applications. Conductive polymers are widely used as flexible TE materials replacing inorganic materials due to their flexibility, low thermal conductivity, mechanical flexibility, ease of processing, and low cost. In this review, we briefly introduce the latest research trends in the flexible TE technology and provide a comprehensive summary of specific conductive polymer-based TE material fabrication technologies. We also summarize the manufacture for high-efficiency TE composites through the complexation of a conductive polymer matrix/inorganic TE filler. We believe that this review will inspire further research to improve the TE performance of conductive polymers.

FPGA Implementation of an Artificial Intelligence Signal Recognition System

  • Rana, Amrita;Kim, Kyung Ki
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.16-23
    • /
    • 2022
  • Cardiac disease is the most common cause of death worldwide. Therefore, detection and classification of electrocardiogram (ECG) signals are crucial to extend life expectancy. In this study, we aimed to implement an artificial intelligence signal recognition system in field programmable gate array (FPGA), which can recognize patterns of bio-signals such as ECG in edge devices that require batteries. Despite the increment in classification accuracy, deep learning models require exorbitant computational resources and power, which makes the mapping of deep neural networks slow and implementation on wearable devices challenging. To overcome these limitations, spiking neural networks (SNNs) have been applied. SNNs are biologically inspired, event-driven neural networks that compute and transfer information using discrete spikes, which require fewer operations and less complex hardware resources. Thus, they are more energy-efficient compared to other artificial neural networks algorithms.

Advances in Nanomaterials-Based Color Conversion Layer (나노물질 기반의 광변환층 개발 동향)

  • Kim, Dongryong;Choi, Moon Kee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.6
    • /
    • pp.547-555
    • /
    • 2022
  • Color conversion layer refers to a layer that converts the blue light emitted from the backlight into the red and green light. Heavy metal-free quantum dots and perovskite nanocrystals have attracted great attention as base materials for color conversion layers due to their outstanding optical characteristics. Here, we review recent advances in the development of color conversion layers based on quantum dots. First, we overview the representative optical characteristics of quantum dots and perovskite nanocrystals, and then introduce printing techniques for color converting layers including photolithography, inkjet printing, and nanoimprinting. Finally, we conclude this review with a brief perspective.

Use of Acellular Biologic Matrix Envelope for Cardiac Implantable Electronic Device Placement to Correct Migration into Submuscular Breast Implant Pocket

  • Peyton Terry;Kenneth Bilchick;Chris A. Campbell
    • Archives of Plastic Surgery
    • /
    • v.50 no.2
    • /
    • pp.156-159
    • /
    • 2023
  • Breast implants whether used for cosmetic or reconstructive purposes can be placed in pockets either above or below the pectoralis major muscle, depending on clinical circumstances such as subcutaneous tissue volume, history of radiation, and patient preference. Likewise, cardiac implantable electronic devices (CIEDs) can be placed above or below the pectoralis major muscle. When a patient has both devices, knowledge of the pocket location is important for procedural planning and for durability of device placement and performance. Here, we report a patient who previously failed subcutaneous CIED placement due to incision manipulation with prior threatened device exposure requiring plane change to subpectoral pocket. Her course was complicated by submuscular migration of the CIED into her breast implant periprosthetic pocket. With subcutaneous plane change being inadvisable due to patient noncompliance, soft tissue support of subpectoral CIED placement with an acellular biologic matrix (ABM) was performed. Similar to soft tissue support used for breast implants, submuscular CIED neo-pocket creation with ABM was performed with durable CIED device positioning confirmed at 9 months postprocedure.