DOI QR코드

DOI QR Code

Analysis of Temperature Effects on Raman Silicon Photonic Devices

  • Kim, Won-Chul (School of Electronic and Electrical Engineering, Hongik University) ;
  • Park, Dong-Wook (School of Electronic and Electrical Engineering, Hongik University)
  • Received : 2008.10.08
  • Accepted : 2008.11.13
  • Published : 2008.12.31

Abstract

Recent research efforts on study of silicon photonics utilizing stimulated Raman scattering have largely overlooked temperature effects. In this paper, we incorporated the temperature dependences into the key parameters governing wave propagation in silicon waveguides with Raman gain and investigated how the temperature affects the solution of the coupled-mode equations. We then carried out, as one particular application example, a numerical analysis of the performance of wavelength converters based on stimulated Raman scattering at temperatures ranging from 298 K to 500 K. The analysis predicted, among other things, that the wavelength conversion efficiency could decrease by as much as 12 dB at 500 K in comparison to that at the room temperature. These results indicate that it is necessary to take a careful account of temperature effects in designing, fabricating, and operating Raman silicon photonic devices.

Keywords

References

  1. R. Soref, “The past, present, and future of silicon photonics,” J. IEEE Quantum Elec., vol. 12, no. 6, pp. 1678-1687, 2006 https://doi.org/10.1109/JSTQE.2006.883151
  2. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Tech., vol. 24, no. 12, pp. 4600-4615, 2006 https://doi.org/10.1109/JLT.2006.885782
  3. G. T. Reed and A. P. Knights, Silicon Photonics - An Introduction, (John Wiley & Sons, NJ, 2004)
  4. B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, “Raman-based silicon photonics,” J. IEEE Quantum Elec., vol. 12, no. 3, pp. 412-421, 2006 https://doi.org/10.1109/JSTQE.2006.872708
  5. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccla, “An all-silicon Raman laser,” Nature, vol. 433, no. 20, pp. 292-294, 2005 https://doi.org/10.1038/nature03273
  6. V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, “Parametric Raman wavelength conversion in scaled silicon waveguide,” J. Lightwave Tech., vol. 23, no. 6, pp. 2904-2102, 2005 https://doi.org/10.1109/JLT.2005.849895
  7. T. R. Hart, R. L. Aggarwal, and B. Lax, “Temperature dependence of Raman scattering in silicon,” Phys. Rev., vol. 148, no. 2 pp. 845-848, 1966 https://doi.org/10.1103/PhysRev.148.845
  8. P. G. Klemens, “Anharmonic decay of optical phonons,” Phys. Rev., vol. 148, no. 2 pp. 845-848, 1966 https://doi.org/10.1103/PhysRev.148.845
  9. J. M. Ralston and R. K. Chang, “Spontaneous-Raman scattering efficiency and stimulated scattering in silicon,” Phys. Rev. B., vol. 2, no. 6, pp. 1858-1862, 1970 https://doi.org/10.1103/PhysRevB.2.1858
  10. M. Balkanski, R. F. Wallis, and E. Haro, “Anharmornic effects in light scattering due to optical phonon in silicon,” Phys. Rev. B., vol. 28, no. 4, pp. 1928-1934, 1983 https://doi.org/10.1103/PhysRevB.28.1928
  11. A. Compaan and H. J. Trodahl, “Resonance Raman scattering in Si at elevated temperatures,” Phys. Rev. B., vol. 29, no. 2, pp. 793-801, 1984 https://doi.org/10.1103/PhysRevB.29.793
  12. G. P. Agrawal, Nonlinear Fiber Optics, 3rded., (Academic Press, San Diego, 2002)
  13. E. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, and E. M. Dianov, “Mutual influence of parametric effects and stimulated Raman scattering in optical waveguide,” J. IEEE Quantum Elec., vol. 26, no. 10, pp. 1815-1820, 1990 https://doi.org/10.1109/3.60906
  14. R. Loudon, “The Raman effect in crystals,” Advan. Phys. vol. 13, pp. 423-482, 1964 https://doi.org/10.1080/00018736400101051
  15. C. Kittel, Introduction to Solid State Physics, 8th ed, (John Wiley & Sons, Hoboken, NJ, 2005)
  16. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors, 3rd ed., (Springer-Verlag, Berlin, 2001)
  17. H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett., vol. 85, no. 12, pp. 2196-2198, 2004 https://doi.org/10.1063/1.1794862
  18. J. Niu, J. Sha, and D. Yang, “Temperature dependence of first-order Raman scattering in silicon nanowire,” Scrip. Mat., vol. 55, pp. 183-186, 2006 https://doi.org/10.1016/j.scriptamat.2006.03.060
  19. Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. vol. 137, no. 6A, pp. A1787-A1805, 1965 https://doi.org/10.1103/PhysRev.137.A1787
  20. Y. R. Shen, The Principles of Nonlinear Optics, (John Wiley & Sons, New York, 1984)
  21. R. Claps and D. Dimitropoulos, Y. Han, B. Jalali, “Observation of Raman emission in silicon waveguide at 1.54um,” Opt. Exp., vol. 10. no. 22, pp. 1305-1313, 2002 https://doi.org/10.1364/OE.10.001305
  22. J. Touminen, T. Niemi, and H. Ludvigsen, “Wavelength reference for optical telecommunications based on a temperature-tunable silicon etalon,” Rev. Sci. Instrum., vol. 74, no. 8, pp. 3620-3623, 2003 https://doi.org/10.1063/1.1590746
  23. R. W. Boyd, Nonlinear Optics, 2nded., (Academic Press, San Diego, 2003
  24. L. Pavesi and D. J. Lockwood, Silicon Photonics, (Springer-Verlag, Berlin, 2004)

Cited by

  1. Ambient condition desensitization of a fiber Raman temperature sensing system based on a dynamic sampling-correction scheme vol.54, pp.15, 2015, https://doi.org/10.1364/AO.54.004823
  2. Temperature Stabilization of Group Index in Silicon Slotted Photonic Crystal Waveguides vol.15, pp.4, 2011, https://doi.org/10.3807/JOSK.2011.15.4.398
  3. Compact and Temperature Independent Electro-optic Switch Based on Slotted Silicon Photonic Crystal Directional Coupler vol.16, pp.3, 2012, https://doi.org/10.3807/JOSK.2012.16.3.282
  4. Broadband Wavelength-swept Raman Laser for Fourier-domain Mode Locked Swept-source OCT vol.13, pp.3, 2009, https://doi.org/10.3807/JOSK.2009.13.3.316