Browse > Article
http://dx.doi.org/10.4313/JKEM.2019.32.3.192

Dislocation Analysis of CVD Single Crystal Diamond Using Synchrotron White Beam X-Ray Topography  

Yu, Yeong-Jae (Energy and Environment Division, Korea Institute of Ceramic Engineering and Technology)
Jeong, Seong-Min (Energy and Environment Division, Korea Institute of Ceramic Engineering and Technology)
Bae, Si-Young (Energy and Environment Division, Korea Institute of Ceramic Engineering and Technology)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.32, no.3, 2019 , pp. 192-195 More about this Journal
Abstract
Single-crystal diamond obtained by chemical vapor deposition (CVD) exhibits great potential for use in next-generation power devices. Low defect density is required for the use of such power devices in high-power operations; however, plastic deformation and lattice strain increase the dislocation density during diamond growth by CVD. Therefore, characterization of the dislocations in CVD diamond is essential to ensure the growth of high-quality diamond. In this work, we analyze the characteristics of the dislocations in CVD diamond through synchrotron white beam X-ray topography. In estimate, many threading edge dislocations and five mixed dislocations were identified over the whole surface.
Keywords
Diamond; CVD; Dislocation; X-ray topography;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Isberg, J. Hammersberg, E. Johansson, T. Wikstrom, D. J. Twitchen, A. J. Whitehead, S. E. Coe, and G. A. Scarsbrook, Science, 297, 1670 (2002). [DOI: https://doi.org/10.1126/science.1074374]   DOI
2 K. Ueda, M. Kasu, Y. Yamauchi, T. Makimoto, M. Schwitters, D. J. Twitchen, G. A. Scarsbrook, and S. E. Coe, IEEE Electron Device Lett., 27, 570 (2006). [DOI: https://doi.org/10.1109/LED.2006.876325]   DOI
3 M. Kasu, K. Ueda, H. Ye, Y. Yamauchi, S. Sasaki, and T. Makimoto, Electron. Lett., 41, 1249 (2005). [DOI: https://doi.org/10.1049/el:20053194]   DOI
4 M. Kasu, M. Kubovic, A. Aleksov, N. Teofilov, Y. Taniyasu, R. Sauer, E. Kohn, T. Makimoto, and N. Kobayashi, Diamond Relat. Mater., 13, 226 (2004). [DOI: https://doi.org/10.1016/j.diamond.2003.10.025]   DOI
5 S. Ohmagari, T. Teraji, and Y. Koide, J. Appl. Phys., 110, 056105 (2011). [DOI: https://doi.org/10.1063/1.3626791]   DOI
6 M. Saremi, R. Hathwar, M. Dutta, F.A.M. Koeck, R. J. Nemanich, S. Chowdhury, and S. M. Goodnick, Appl. Phys. Lett., 111, 043507 (2017). [DOI: https://doi.org/10.1063/1.4986756]   DOI
7 L.T.M. Hoa, T. Ouisse, D. Chaussende, M. Naamoun, A. Tallaire, and J. Achard, Cryst. Growth Des., 14, 5761 (2014). [DOI: https://doi.org/10.1021/cg5010193]   DOI
8 L. Rondin, J. P. Tetienne, T. Hingant, J. F. Roch, P. Maletinsky, and V. Jacques, Rep. Prog. Phys., 77, 056503 (2014). [DOI: https://doi.org/10.1088/0034-4885/77/5/056503]   DOI
9 J. Achard, F. Silva, A. Tallaire, X. Bonnin, G. Lombardi, K. Hassouni, and A. Gicquel, J. Phys. D: Appl. Phys., 40, 6175 (2007). [DOI: https://doi.org/10.1088/0022-3727/40/20/S04]   DOI
10 N. Tranchant, M. Nesladek, D. Tromson, Z. Remes, A. Bogdan, and P. Bergonzo, Phys. Status Solidi A, 204, 3023 (2007). [DOI: https://doi.org/10.1002/pssa.200776342]   DOI
11 S. A. Solin and A. K. Ramdas, Phys. Rev. B, 1, 1687 (1970). [DOI: https://doi.org/10.1103/PhysRevB.1.1687]   DOI
12 J. P. Hirth and J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1968) p. 285.
13 Y. Kato, H. Umezawa, H. Yamaguchi, and S. Shikata, Jpn. J. Appl. Phys., 51, 090103 (2012). [DOI: https://doi.org/10.1143/JJAP.51.090103]   DOI