• Title/Summary/Keyword: Electronic band structure

Search Result 713, Processing Time 0.03 seconds

Design Approach of Q-band Precision Subminiature Coaxial Adaptor Using 3D Simulator and Its Experimental Results (3D 시뮬레이션과 측정값을 이용한 Q-band 정밀 초소형 동축 어댑터의 설계)

  • Wang, Cong;Qian, Cheng;Cho, Won-Yong;Kim, Nam-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.387-388
    • /
    • 2008
  • This paper presents the design approach and test results of the Q-band precision subminiature coaxial adaptor based on transmission line theory using multi-step impedance and air-holes to increase its cutoff frequency. In order to increase the frequency performance, the adaptor is designed with hooked structure, fixing step, multi-air-holes, and outer conductor. The return loss increments due to the hooked structure and multi air-holes are minimized to 2 dB and 1.5 dB, respectively. A VSWR(Voltage Standing Wave Ratio) of <1.2 is obtained from DC to 40 GHz, while guaranteeing the durability of the adaptor from room-temperature$(25^{\circ}C)$ to $120^{\circ}C$.

  • PDF

Structural Stability and the Electronic Structure of InP/GaP Superlattices

  • Park, Cheol-Hong;Chang, Kee-Joo
    • ETRI Journal
    • /
    • v.13 no.4
    • /
    • pp.25-34
    • /
    • 1991
  • The stability and the electronic structure of $In_0.5$.$Ga_0.5$P-based superlattices are examined through self-consistent ab initio pseudopotential calculations. A chalcopyrite-like structure is found to be the lowest energy state over (001) and (111) monolayer superlattices (MLS). Our calculations indicate that all the ordered structures in bulk form are unstable against phase segregation into binary constituents at T = 0 while for epitaxial growth, the chalcopyrite phase is stabilized. The fundamental band gaps of the ordered structures are found to be direct and smaller than that of disordered alloys. The lowering of the band gap is explainable by band folding and pushing effects. We find the reduction of the band gap to be largest for the (111) MLS.

  • PDF

Slotted Implantable Patch Antenna for ISM Band Application and Its Usage in WiMAX with an I-Shaped Defected Ground Structure

  • Ayubi, Adil Al;Sukhija, Shikha;Sarin, Rakesh Kumar
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.6
    • /
    • pp.359-363
    • /
    • 2017
  • A slotted implantable patch antenna with microstrip feeding is proposed for industrial, scientific, and medical band applications. The result is verified by implanting the antenna in animal tissue. Further, by varying the ground width and introducing a defect into the ground structure, the antenna becomes applicable for worldwide interoperability for microwave access operations. A simulation is performed using Empire XCcel software. An Agilent vector network analyzer is used for analyzing the return loss performance. Simulated and measured results are compared. Antennas with and without defected ground structure both have key advantages including low profile, desirable return loss, good impedance matching and required bandwidth.

Design of Ultra-wide Band-pass Filter Based on Metamaterials Applicable to Microwave Photonics

  • Lee, Chongmin;Shim, Wooseok;Moon, Yong;Seo, Chulhun
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.288-291
    • /
    • 2012
  • We designed an ultra-wide band-pass filter applicable to microwave reflectometry for KSTAR (Korea Superconducting Tokamak Advanced Research) and to microwave photonics. The proposed ultra-wide band-pass filter exhibits a metamaterial structure characterized by a wide band, low insertion loss, and high skirt selectivity. The proposed filter is applied to enhance the linearity of reflectometry at the output of a VCO (voltage controlled oscillator). The pass-band of the proposed filter is observed at 18~28 GHz, and the out-of-band rejection is below 20 dB. Further, we constructed an unwrapped negative phase of S(2, 1) to verify the characteristics of the metamaterial. The under- and upper-band at lower limits of the pass-band are left- and right-handed, respectively. The group delay of the filter is less than 0.5 ns.

Design of UWB Antenna with Fork-type structure and circular patch (원형 패치와 포크형 구조가 결합된 UWB 안테나)

  • Ha, Yun-Sang;Kim, Gi-Rae;Choi, Young-Kyu;Yun, Joong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.10
    • /
    • pp.1837-1844
    • /
    • 2016
  • This paper proposes an antenna of the fork type structure that operates in the UWB (Ultra Wide Band) frequency band (3.1 ~ 10.6 GHz). The proposed antenna is attached a circular patch in order to obtain the UWB band characteristics to the fork-type patch antenna. The ground plane is implemented in a arc-shape configuration. The effect of various parameters of the modified fork type radiating patch and partial arc ground plane for UWB operation is investigated. The proposed antenna is made of $34.0{\times}50.0{\times}1.0mm^3$ and is fabricated on the permittivity 4.4 FR-4 substrate. The experiment results shown that the proposed antenna obtained the -10 dB impedance bandwidth 8200 MHz (2.7 ~ 10.9 GHz) covering the UWB bands. This result satisfied the characteristics of ultra-wideband and the proposed antenna will be applicable to an ultra wideband system.

Implementation of V-Band Filter using MCM-D Technology (MCM-D 기판 공정 기술을 이용한 V-Band Filter 구현)

  • Yoo, Chan-Sei;Song, Sang-Sub;Park, Jong-Chul;Seo, Kwang-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.169-170
    • /
    • 2006
  • A band pass filter for the V-band application with unique circuit and structure was designed and implemented using 2-metals, 3-BCB layers. In the mean while the effective electrical conductivity of metal layer was extracted and its value was $4{\times}10^7S/m$. The insertion loss of band pass filter at 60 GHz was 3.0 dB and group delay was below 0.1 ns.

  • PDF

Two-dimensional modelling of uniformly doped silicene with aluminium and its electronic properties

  • Chuan, M.W.;Wong, K.L.;Hamzah, A.;Rusli, S.;Alias, N.E.;Lim, C.S.;Tan, M.L.P.
    • Advances in nano research
    • /
    • v.9 no.2
    • /
    • pp.105-112
    • /
    • 2020
  • Silicene is a two-dimensional (2D) derivative of silicon (Si) arranged in honeycomb lattice. It is predicted to be compatible with the present fabrication technology. However, its gapless properties (neglecting the spin-orbiting effect) hinders its application as digital switching devices. Thus, a suitable band gap engineering technique is required. In the present work, the band structure and density of states of uniformly doped silicene are obtained using the nearest neighbour tight-binding (NNTB) model. The results show that uniform substitutional doping using aluminium (Al) has successfully induced band gap in silicene. The band structures of the presented model are in good agreement with published results in terms of the valence band and conduction band. The band gap values extracted from the presented models are 0.39 eV and 0.78 eV for uniformly doped silicene with Al at the doping concentration of 12.5% and 25% respectively. The results show that the engineered band gap values are within the range for electronic switching applications. The conclusions of this study envisage that the uniformly doped silicene with Al can be further explored and applied in the future nanoelectronic devices.

Study on a design of Band Pass Filter C-band using silicon substrate (실리콘 기판을 이용한 Ku-band용 Band Pass Filter 설계에 관한 연구)

  • Lee, Tae-Il;Cui, Ming-Lu;Park, In-Chul;Kim, Hong-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.219-222
    • /
    • 2003
  • In this paper, we designed a Ku-band BPF(Band Pass Filter) by microstrip line that most usually used a microwave device design and fabrication. Here a substrate of designed BPF were silicon substrate(${\varepsilon}_r=11.8$), and metal line was copper and silver/copper structure. And a configration of BPF was used hairpin pattern. A center frequency of designed BPF was 10GHz and their FBW(Fractional Band Width) was 20%(2GHz). It presented simulated results obtained for a 10GHz filter which yields an insertion loss of 0.1dB that ripple value related chebyshev reponse. Finallt we tried to make that a 30dB attenuation frequency was 20% of center frequency.

  • PDF

Electronic Structures and Noncollinear Magnetic Properties of Structurally Disordered Fe

  • Park, Jin-Ho;Min, B.I.
    • Journal of Magnetics
    • /
    • v.15 no.1
    • /
    • pp.1-6
    • /
    • 2010
  • The magnetic properties of amorphous Fe were investigated by examining the electronic structures of structurally disordered Fe systems generated from crystalline bcc and fcc Fe using a Monte-Carlo simulation. As a rst principles band method, the real space spin-polarized tight-binding linearized-mun-tin-orbital recursion method was used in the local spin density approximation. Compared to the crystalline system, the electronic structures of the disordered systems were characterized by a broadened band width, smoothened local density of states, and reduced local magnetic moment. The magnetic structures depend on the short range configurations. The antiferromagnetic structure is the most stable for a bcc-based disordered system, whereas the noncollinear spin spiral structure is more stable for a fcc-based system.

Electronic Structure of Pd(111) using Angle-Resolved Phothemission Spectroscopy (각분해 광전자 분광법을 이용한 Pd(111)의 전자구조 연구)

  • Hwang, Do-Weon;Kang, Jeong-Soo;Hong, Jae-Hwa;Jeong, Jae-In;Moon, Jong-Ho;Kim, Kun-Ho;Lee, Jeoung-Ju;Lee, Young-Pak;Hong, Soon-Cheol;Min, Byung-Il
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.1
    • /
    • pp.14-24
    • /
    • 1996
  • We have investigated atomic and electronic structures of a clean Pd(111) surface using low energy electron diffraction (LEED) and angle-resolved photoemission spectroscopy (ARPES). A typical clean LEED pattern with a 3-fold symmetry has been observed, corresponding to that for an fcc (111) surface. ARPES measurements have been performed along the $\Gamma-M,\Gamma-K,\Gamma-M$TEX> symmetry lines, from which the experimental band structure of Pd(111) has been determined. The experimental band structure and work function of Pd(111) surface are found to agree well with the calculated band structure of bulk Pd and the calculated work function of Pd(111), respectively. However, the peak positions in the experimental band structure are located closer to the Fermi level than in the theoretical band structure by 0.1~0.8 eV, depending on the $\kappa$-points in the Brillouin zone. In additin, the experimental band widths are narrower than the theoretical band widths by about 0.5eV. The effects of the localized surface Pd 4d states and the Coulomb interaction between Pd 4d bulk electrons have been discussed as possible origins of such discrepancies between experiment and theory.

  • PDF