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The magnetic properties of amorphous Fe were investigated by examining the electronic structures of structur-

ally disordered Fe systems generated from crystalline bcc and fcc Fe using a Monte-Carlo simulation. As a rst

principles band method, the real space spin-polarized tight-binding linearized-mun-tin-orbital recursion

method was used in the local spin density approximation. Compared to the crystalline system, the electronic

structures of the disordered systems were characterized by a broadened band width, smoothened local density

of states, and reduced local magnetic moment. The magnetic structures depend on the short range configura-

tions. The antiferromagnetic structure is the most stable for a bcc-based disordered system, whereas the non-

collinear spin spiral structure is more stable for a fcc-based system.
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1. Introduction

Amorphous alloy systems have very different magnetic
characteristics compared to crystalline systems [1, 2]. In
the case of amorphous Fe (a-Fe), the difficulties in
making pure a-Fe and the metastability in a very small
temperature range have resulted in experimental investi-
gations being performed only on Fe-rich amorphous alloys
containing a certain amount of metalloids (a-FeB, a-FeP,
etc.) or other transition metals (a-FeZr, a-FeY, etc.). Vari-
ous intriguing phases have been observed in Fe-rich
amorphous alloys, such as the spin glass phase [3-5] and
an asperomagnetic phase [6], etc. This suggests that
amorphous alloys with a similar composition to pure a-Fe
have a noncollinear spin configuration. The magnetic
states of amorphous alloys also depend on the preparation
and thermal treatment of the samples. Amorphous Fe2Y
prepared by melt-spinning becomes a ferromagnet [7],
whereas a-Fe2Y prepared by sputtering becomes a con-
centrated spin-glass [8]. Therefore, it is unclear how the
structural disorder affects the magnetic state in amorph-
ous alloys.
The different behaviors of a-Fe alloys have been attri-

buted tentatively to fluctuations in the distance and

number of the Fe coordinations [9] as well as to the
different initial conditions in fabricating the alloys [10]. A
few theoretical studies based on the model Hamiltonians
have been reported [11, 12]. However, the results are not
consistent with the experimental data. Therefore, rst-
principles electronic structure calculations that consider
the noncollinear spin congurations are required. First-
principles band structure calculations are very compli-
cated and time-consuming because there is no proper
translational symmetry in an amorphous system. Further-
more, it is almost impossible to simulate a spin-glass state
with a noncollinear spin structure as found in Fe-rich
amorphous alloys. 
There are several reports using the rst principles band

calculations in a local-spin-density approximation (LSDA).
Hafner et al. [13] carried out self-consistent tight-binding
linear-muffin-tin-orbital (TB-LMTO) [14] band calculations
for a supercell consisting of 64 atoms by assuming the
collinear spin configuration. They reported that under
compression, isolated local moments tend to be flipped
down to the opposite direction. Lorenz and Hafner [15, 16]
examined the noncollinear spin structure of itinerant
magnets using the Hubbard Hamiltonian constructed by
the TB-LMTO. They showed that a-Fe undergoes a con-
tinuous transition from a ferromagnetic to a spin-glass-
like state with increasing density. They assumed an effec-
tive universal Stoner parameter to obtain the spin polariz-
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ed electronic structure. Liebs et al. [17] studied struc-
turally disordered Fe, Co and Ni by treating the non-
collinear magnetic structures in a fully self-consistent
manner. Their results for Fe showed that with increasing
density, the noncollinear structures are energetically lower
than collinear ones. However, the calculation was not free
of periodicity problems because of the small number of
atoms (16 atoms) within the cell.
Real-space large cluster calculations have also been

performed for a large amorphous cluster consisting of
several hundreds of atoms. The real-space TB-LMTO
method was rst applied to a-Fe in its simplest form by
Fujiwara [18, 19]. The local density of states (LDOS)
was obtained self-consistently by averaging over a few
selected atoms in the central unit cell. A more detailed
account of the method was reported by Nowak et al. [20]
with the paramagnetic electronic structure calculation for
a-Fe80B20. Bratkovsky and Smirnov [21] performed a
spin-polarized calculation for a ferromagnetic state of a-
Fe. Krey et al. [22, 23] examined noncollinear magnetic
structures in amorphous systems using the TB-LMTO-
recursion method [24]. They used an empirical Slater-
Koster [25] parameterization using a fitted value of the
exchange parameter. They showed that for a-Fe, which is
a noncollinear canted magnetic structure, either the as-
peromagnetic or speromagnetic state is energetically more
stable.
This study investigated the ground state electronic and

magnetic properties of structurally disordered Fe, using
the real space scheme of the TB-LMTO recursion method.
The electronic structures are examined by varying the
disorder of the cluster and by allowing the noncollinear
polarized direction of the magnetic moment of each atom.
Since a precise calculation of a completely disordered
system is not possible, one has to resort to a simple model
of an amorphous system. For this purpose, this study
employed a 54-atom cluster generated from a bcc Fe and
a 64-atom cluster generated from fcc Fe, where all the
atoms up to the third nearest neighbors from the central
atom are included in the cluster. The calculations are al-
most free of periodicity problems because the TB-LMTO
Hamiltonian considers atoms up to the third nearest
neighbors for each site.

2. Computational Method

Real-space TB-LMTO recursion calculations for di-
sordered Fe using the supercell approach. The real-space
TB-LMTO method is a rst-principles and self-consistent
band calculation based on the LMTO-ASA (atomic-
sphere approximation) formalism. It is similar to the

conventional LMTO-ASA scheme except that the LDOS
is obtained in real space using the recursion method rather
than in k-space by solving the eigenvalue problem [14,
20, 26]. In the present study, the calculations were carried
out with a LMTO basis of s, p, and d states, for which 31
pairs of recursion coefficients were evaluated. For a bcc-
based cluster, 9216 atoms were considered so that 31
levels of recursion coefficients could be calculated
accurately.
The non-collinear spin structure was treated according

to the scheme reported by Heine et al. [27, 28]. The
Hamiltonian, HRL,R'L' , is defined along the global z axis,
whereas the spin for each atom is arranged along the local
ξR axis. To perform the computations, the Hamiltonian
must be expressed in terms of the local axis. Let us
represent the Hamiltonian matrix elements HRLα,R'L'β with
respect to the global axes, and HRLµ,R' L'v with respect to
the local ξR and ξR' axes. Then

where DR is the rotation matrix[27];

Here angles θR and ϕR define the direction of ξR on the
atom R relative to the global axis.
In this study, a one-electron Hamiltonian was constructed

from (9216 atoms×9 orbitals×2 spin) states, and the
LDOSs were calculated self-consistently for all sites
(more than 50 sites) in several disordered unit cells. There-
fore, it requires considerable computer time and memory
size. A substantial amount of computer time is saved by
setting all ϕR=0, because the Hamiltonian matrix then
becomes real. Although it restricts the variety of congu-
rations, one can still consider the physical situations by
allowing to take on the full range from 0 to 2π. The spin
configuration corresponding to the spin spiral state (all
ϕR=0) is then considered, in which the spins within a
plane are all parallel with polar angles θR with respect to
the global axis and the polar angle increases from plane to
plane.
Large supercells of 54 (bcc)-64 (fcc) atoms were used

to simulate the amorphous structure. These cells were cut
from a larger cluster of bcc or fcc crystalline Fe, and
relaxed under the periodic boundary condition through a
Monte-Carlo scheme. A structurally disordered Fe was
obtained by varying the amount of maximum displacement
from the equilibrium position, δR/R0

NN, where δR and
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R
0
NN represent the displacement from the crystalline (equi-

librium) position and the nearest neighbor (NN) distance
of the crystalline Fe, respectively. At rst, a given number
(54 or 64) of Fe atoms were placed into a cubic box on
the sites of the bcc- or the fcc-lattice with a fixed lattice
constant of a=2.78 Å or a=3.58 Å. The atoms were then
displaced in random directions, and the system was
relaxed using the Monte-Carlo method under the periodic
boundary condition. During the relaxation procedure, the
volume of the cubic box and minimal nearest neighbor
distance were fixed to 0.95 R0

NN. The amorphous cell was
repeated periodically, and for a bcc-based system, a
cluster of 9216 atoms was then obtained by including all
sites up to a certain distance from each atom of a central
cube. The distance was chosen to guarantee that the
coefficients in the 31 levels of the continued fraction were
evaluated precisely.

3. Results

3.1. Radial distribution function

Since the exact positions of the atoms in amorphous
materials are unknown, it was ensured that our cluster gives
a reasonable radial distribution function when compared
either to experiments or to more sophisticated calculations.
The radial distribution function provides information on the
short range local atomic configuration. Fig. 1 compares
resulting radial distributions of the neighboring atoms from
this model with the more sophisticated calculational result
for a-Fe [29]. Both the fcc (Fig. 1(a)) and bcc-based dis-
ordered model (Fig. 1(c)) appear to reproduce the atomic
configuration of a-Fe well (Fig. 1(b)). That is, the second
crystalline peaks labeled B (fcc) and B (bcc) are smeared.
Hence, the broad rst peaks labeled A and A'  become pre-
dominant near r1=2.45 Å, which appears to be consistent
with the rst dominant peak in a-Fe.

3.2. Collinear magnetic structure

The rst step to understand the magnetic properties in
amorphous alloys was to examine their electronic struc-
tures. As the magnetic ground state of bcc Fe is ferromag-
netic, the collinear ferromagnetic spin configuration was
considered for bcc-based disordered Fe. Fig. 2 shows the
LDOS for the bcc-based disordered Fe systems. In this
calculation, the LDOSs of all atomic sites in the central
unit cell are determined self-consistently. In previous TB-
LMTO calculations [15, 16, 22, 23], the LDOSs were
determined by averaging over a few selected atoms in the
central unit cell. The magnetic moments and LDOSs for
disordered Fe are no longer homogeneous due to the
structural disorder. The notable features in the LDOSs of

the bcc-based a-Fe are: (i) the band width becomes wider
than in crystalline bcc Fe, (ii) the main peak near the top
of the majority spin band shifts toward the Fermi energy,
and (iii) the band broadens with decreasing magnetic
moment. That is, atoms with smaller magnetic moments
have wider bands.
In Figs. 3(a) and 3(b), the magnetic moment behaviors

were examined as a function of the disorderness δR/R0
NN

of the system and the sum of the inverse fifth power of
the neighboring bond lengths, respectively. The disorderness
increases with increasing displacement δR. Fig. 3(a) shows
that in the bcc-based disordered Fe systems, the average
magnetic moment decreases with increasing disorder. An
atom with a closely-packed environment, i.e. having neigh-
bors with reduced bond lengths, tends to have magnetic
moment polarized antiferromagnetically to its neighbor-
ing spins. By introducing the disorder, the bond lengths
become different from those of crystalline Fe but the
average bond length is not changed due to the fixed
volume. Instead, the average value of some power of the
bond length is changed. Consequently, the hopping strength

Fig. 1. The radial distribution functions for fcc- (a) and bcc-

based (c) amorphous systems, which are compared with the

more sophisticated calculational result for a-Fe (b). The verti-

cal bars referring to the right y-axis represent the number of

atoms at the atomic positions in a crystalline system. The

insets show the atomic congurations considered in the calcu-

lation. The different symbols represent the atoms in the differ-

ent layers and the atoms connected by the line correspond to

the ones in the basal plane.
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and band width would also be changed because they are
proportional to the inverse power of the bond length. In
the TB approximation, the hopping strength between the
d-states of the nearest neighbors is given by the inverse

fifth power of the bond length (~1/R5) [24, 25]. Therefore,
a decrease in the magnetic moment in the amorphous
phase is expected to be associated with this change in
hopping strength.
Indeed, as shown in Fig. 3(b), the local magnetic moment

in the fcc-based disordered Fe decreases as a function of
the sum of the inverse fifth power of the bond lengths.
Since the magnetic ground state of crystalline fcc Fe is
antiferromagnetic, the antiferromagnetic spin configu-
ration for the fcc-based disordered Fe system in Fig. 3(b)
was initially assumed. Although the data is scattered, one
can recognize the almost linear relationship between the
size of the local magnetic moment and the sum of the
inverse fifth power of the bond lengths. These results
suggest that the effective hopping strength increases in
the disordered Fe to reduce the magnetic moment at each
site.
The reason why the magnetic moment in the case of the

bcc-based disordered system reduces so rapidly compared
to the case of the fcc-based system was examined [30].
One can understand this behavior by referring to the
radial distribution functions shown in Fig. 1. In the bcc-
based system, the second neighbor peak is located close
to the rst peak, whereas in the fcc-based system, the second
peak is located farther from the first peak. Therefore, in
the bcc-based system, the effective number of nearest
neighbors increases with increasing disorder, while, the
number is relatively constant in the fcc-based system.
That is, the effective number of nearest neighbors in the
bcc-based system increases up to ~10.5, and the hopping
strength increases accordingly to give rise to reduced
magnetization.
The topological difference between the bcc and fcc-

based systems also needs to be considered. The magnetic
moment variation in the FeZr series shows slowly in-
creasing behavior with decreasing Zr concentration down
to 14% [31]. Below this limit, the moment begins to
decrease rapidly. This behavior was interpreted in terms
of the appearance of two magnetic states of Fe below
14% Zr; ferromagnetic bcc Fe and antiferromagnetic fcc
Fe. A similar behavior of the magnetic moment variation
was observed in the FeB series [9]. It is likely that amorph-
ous FeB varies from densely-packed fcc-like local order
(Fe80B20) to a loosely-packed random structure with bcc-
like local order (Fe88B12). Both the FeZr and FeB series
show rapid decreases in the magnetic moment and the
Curie temperature in the bcc-like local order side, which
is consistent with our interpretation.

3.3. Noncollinear magnetic structure

Consider the noncollinear spin spiral congurations for a-

Fig. 2. LDOSs of the bcc-based disordered Fe at three different

sites with different local magnetic moments, which are com-

pared to the LDOS of the crystalline Fe given in the top panel.

The ferromagnetic collinear spin configuration is assumed.

Fig. 3. (a) Average magnetic moments in the bcc-based disor-

dered Fe as a function of the displacement of δR. (b) Local

magnetic moments in the fcc-based disordered Fe as a function

of the sum of the inverse fifth power of the bond lengths.
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Fe. Fig. 4 shows the total energy per atom as a function of
the spiral angle between the neighboring planes for both bcc
and fcc-based disordered Fe systems. Here, finite spiral
angles of 0o, 60o, 120o and 180o were considered. In the bcc-
based disordered system, the antiferromagnetic spin confi-
guration (180o) is the most stable, whereas in the fcc-based
system, the noncollinear spin spiral configuration (120o)
becomes more stable than the collinear ferromagnetic (0o)
and antiferromagnetic (180o) congurations. The differences
in total energy are in the order of 10 meV/atom, which is
10 times larger than the results reported by Krey et al. who
used empirical parameters [22, 23].
In the bcc-based disordered system, the magnetic

moments of all the nearest neighbors of the central site
are canted-polarized with an angle θ. In contrast, in the
fcc- based disordered system, the magnetic moments of
the four nearest neighbors are polarized ferromagnetically
with that of the central site, whereas those of eight nearest
neighbors are canted-polarized with an angle θ. This
means that the atoms in the fcc-based disordered system
have both ferromagnetic interactions within the plane and
semi-antiferromagnetic interactions between the neighboring
planes. The stable spin spiral phase in the fcc-based dis-
ordered system is expected to come from these combined
ferromagnetic and antiferromagnetic interactions.

4. Conclusion

This study examined the electronic structures and mag-
netic properties of structurally disordered Fe systems using
the spin-polarized TB-LMTO recursion band method in
the LSDA. Compared to crystalline systems, the characteri-
stics of the electronic structures of disordered systems are
a broadened band width and smoothened LDOS. The
increased band width reduces the local magnetic moments,

and the various nearest neighbor hopping strengths at
each site give rise to an inhomogeneous local magnetic
moment distribution. The antiferromagnetic phase was
found to be the most stable in the bcc-based disordered
system, while the non-collinear spin spiral phase becomes
more stable in the fcc-based system. The noncollinear
spin configuration was induced not only by the inhomo-
geneous nearest neighbor magnetic interaction but also by the
inhomogeneous hopping strengths between neighbors.
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