• Title/Summary/Keyword: Electronic and thermal properties

Search Result 1,073, Processing Time 0.035 seconds

Synthesis and Characterization of Ruthenium Doped TiO2 Nanofibers

  • Park, Jung-Yeon;Lee, Deuk-Yong;Cho, Nam-Ihn;Oh, Young-Jei
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.82-89
    • /
    • 2011
  • Ruthenium(Ru)-doped $TiO_2$ nanofibers were prepared using electrospun Ru-$TiO_2$/poly(vinyl acetate) (PVAc) fibers and subsequent annealing for 1 h at temperatures in the range of $500^{\circ}C$ to $1000^{\circ}C$ in air. The properties of the Ru-$TiO_2$ fibers were characterized as a function of the Ru content and calcination temperature using X-ray diffraction, thermal gravimetry with differential scanning calorimetry, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and viscometer, pycnometer and dynamic tensiometer measurements. Although the diameter of the fiber decreased slightly with increasing calcination temperature, no dramatic changes were observed with respect to the ruthenium content. The XRD and FT-IR results revealed that anatase phase and ruthenium metal began to be formed after calcination at temperatures above $500^{\circ}C$. Anatase and rutile phases and ruthenium metal coexisted in the fibers calcined above $600^{\circ}C$. No anatase phase was detected in the fibers containing ruthenium when they were calcined at $1000^{\circ}C$. The morphology of the fibers changed from smooth and uniform to porous with increasing temperature. The experimental results suggest that the calcination temperature and Ru content were influential in determining the morphology and structure of the fibers.

A Study on the Characteristic Analysis of Implemented Baseband AIN MIM Capacitor for Wireless PANs & Mobile Communication (무선PAN 및 이동통신용 기저대역 AIN MIM Capacitor의 구현과 특성분석에 관한 연구)

  • Lee, Jong-Joo;Kim, Eung-Kwon;Cha, Jae-Sang;Kim, Jin-Young;Kim, Young-Sung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.5
    • /
    • pp.97-105
    • /
    • 2008
  • The micro capacitors are passive elements necessary to electronic circuits and wireless portable PAN(personal area network) and Mobile Communications device modules in the baseband circuits in combination with another passive and active devices. As capacitance is proportionally increased with dielectric constant and electrode areas, in addition, inversely decreased the thickness of the dielectric material, thus thin film capacitors are generally seen as a preferable means to achieve high performance and thin film capacitors are used in a variety of functional circuit devices. In this paper, propose dielectric material as AIN(Aluminium nitride) to make micro thin film capacitor, and this capacitor has the MIM(metal-insulator-metal) structure. AIN thin films are widespread applied because they had more excellent properties such as chemical stability, high thermal conductivity, electrical isolation and so on. In addition, AIN films show low frequency response for baseband signal ranges, I-V and C-V electrical characterization of a thin film micro capacitor. The above experimental test and estimated results demonstrate that the thin film capacitor has sufficient and efficient functional performance to be the baseband range frequency of general electronics circuit and passive device applications.

  • PDF

Synthesis of Highly Dispersed Pd Nanocatalysts Through Control of Organic Ligands and Their Electrochemical Properties for Oxygen Reduction Reaction in Anion Exchange Membrane Fuel Cells (유기 리간드 제어를 통한 고분산 팔라듐 나노 촉매의 합성 및 음이온교환막 연료전지를 위한 산소 환원 반응 특성 분석)

  • Sung, Hukwang;Sharma, Monika;Jang, Jeonghee;Jung, Namgee
    • Korean Journal of Materials Research
    • /
    • v.28 no.11
    • /
    • pp.633-639
    • /
    • 2018
  • In anion exchange membrane fuel cells, Pd nanoparticles are extensively studied as promising non-Pt catalysts due to their electronic structure similar to Pt. In this study, to fabricate Pd nanoparticles well dispersed on carbon support materials, we propose a synthetic strategy using mixed organic ligands with different chemical structures and functions. Simultaneously to control the Pd particle size and dispersion, a ligand mixture composed of oleylamine(OA) and trioctylphosphine(TOP) is utilized during thermal decomposition of Pd precursors. In the ligand mixture, OA serves mainly as a reducing agent rather than a stabilizer since TOP, which has a bulky structure, more strongly interacts with the Pd metal surface as a stabilizer compared to OA. The specific roles of OA and TOP in the Pd nanoparticle synthesis are studied according to the mixture composition, and the oxygen reduction reaction(ORR) activity and durability of highly-dispersed Pd nanocatalysts with different particles sizes are investigated. The results of this study confirm that the Pd nanocatalyst with large particles has high durability compared to the nanocatalyst with small Pd nanoparticles during the accelerated degradation tests although they initially indicated similar ORR performance.

Synthesis and Characterization of Large-Area and Highly Crystalline Molybdenum Disulphide Atomic Layer by Chemical Vapor Deposition

  • Park, Seung-Ho;Kim, Yooseok;Kim, Ji Sun;Lee, Su-Il;Cha, Myoung-Jun;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.356.1-356.1
    • /
    • 2014
  • The Isolation of few-layered transition metal dichalcogenides has mainly been performed by mechanical and chemical exfoliation with very low yields. in particular, the two-dimensional layer of molybdenum disulfide (MoS2) has recently attracted much interest due to its direct-gap property and potential application in optoelectronics and energy harvesting. However, the synthetic approach to obtain high-quality and large-area MoS2 atomic thin layers is still rare. In this account, a controlled thermal reduction-sulfurization method is used to synthesize large-MoOx thin films are first deposited on Si/SiO2 substrates, which are then sulfurized (under vacuum) at high temperatures. Samples with different thicknesses have been analyzed by Raman spectroscopy and TEM, and their photoluminescence properties have been evaluated. We demonstrated the presence of mono-, bi-, and few-layered MoS2 on as-grown samples. It is well known that the electronic structure of these materials is very sensitive to the number of layer, ranging from indirect band gap semiconductor in the bulk phase to direct band gap semiconductor in monolayers. This synthetic approach is simple, scalable, and applicable to other transition metal dichalcogenides. Meanwhile, the obtained MoS2 films are transferable to arbitrary substrates, providing great opportunities to make layered composites by stacking various atomically thin layers.

  • PDF

Synthesis and Characterization of Large-Area and Highly Crystalline Molybdenum Disulphide Atomic Layer by Chemical Vapor Deposition

  • Park, Seung-Ho;Kim, Yooseok;Kim, Ji Sun;Lee, Su-Il;Cha, Myoung-Jun;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.287.1-287.1
    • /
    • 2013
  • The Isolation of few-layered transition metal dichalcogenides has mainly been performed by mechanical and chemical exfoliation with very low yields. in particular, the two-dimensional layer of molybdenum disulfide (MoS2) has recently attracted much interest due to its direct-gap property and potential application in optoelectronics and energy harvesting. However, the synthetic approach to obtain high-quality and large-area MoS2 atomic thin layers is still rare. In this account, a controlled thermal reductionsulfurization method is used to synthesize large-MoOx thin films are first deposited on Si/SiO2 substrates, which are then sulfurized (under vacuum) at high temperatures. Samples with different thicknesses have been analyzed by Raman spectroscopy and TEM, and their photoluminescence properties have been evaluated. We demonstrated the presence of single-, bi-, and few-layered MoS2 on as-grown samples. It is well known that the electronic structure of these materials is very sensitive to the number of layer, ranging from indirect band gap semiconductor in the bulk phase to direct band gap semiconductor in monolayers. This synthetic approach is simple, scalable, and applicable to other transition metal dichalcogenides. Meanwhile, the obtained MoS2 films are transferable to arbitrary substrates, providing great opportunities to make layered composites by stacking various atomically thin layers.

  • PDF

Synthesis and Characterization of Homo Binuclear Macrocyclic Complexes of UO2(VI), Th(IV), ZrO(IV) and VO(IV) with Schiff-Bases Derived from Ethylene diamine/Orthophenylene Diamine, Benzilmonohydrazone and Acetyl Acetone

  • Mohapatra, R.K.;Ghosh, S.;Naik, P.;Mishra, S.K.;Mahapatra, A.;Dash, D.C.
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.1
    • /
    • pp.62-67
    • /
    • 2012
  • A series of homo binuclear complexs of the type $[M_2(L/L^')(NO_3)n].mH_2O$, [where $M=U{O_2}^{2+},\;Th^{4+},\;ZrO^{2+}$] and $[(VO)_2(L/L^')(SO_4)_2]{\cdot}2H_2O$, L=1,5,6,9,12,15,16,20 octaaza-7,813,14-tetraphenyl-2,4,17,19-tetramethyl-1,4,6,8,12,14,16,19-docosaoctene (OTTDO) or L'=10:11;21:22-dibenzo-1,5,6,9,12,15,16,20-octaaza-7,813,14-tetraphenyl-2,4,17,19-tetramethyl-1,4,6,8,12,14,16,19-docosaoctene (DOTTOT), n=4 for $U{O_2}^{2+}$, $ZrO^{2+}$ n=8 for $Th^{4+}$ m=1,2,3 respectively, have been synthesized in template method from ethylenediamine/orthophenylene diamine, benzil monohydrazone and acetyl acetone and characterized on the basis of elemental analysis, thermal analysis, molar conductivity, magnetic moment, electronic, infrared, $^1H$-NMR studies. The results indicate that the VO(IV) ion is penta co-ordinated yielding paramagnetic complexes; $UO_2(VI)$, ZrO(IV) ions are hexa co-ordinated where as Th(IV) ion is octa co-ordinated yielding diamagnetic complexes of above composition. The fungi toxicity of the ZrO(IV) and VO(IV) complexes against some fungal pathogen has been studied.

Preparation and Characterization of Functional Microcapsules Containing Suspensions of Conducting Materials (전도성 물질 서스펜션을 함유한 마이크로캡슐)

  • Ihm, DaeWoo;Kwon, Won Ho
    • Applied Chemistry for Engineering
    • /
    • v.26 no.1
    • /
    • pp.40-46
    • /
    • 2015
  • Microcapsules containing the suspension of conducting materials such as carbon nanotube (CNT) or polyaniline (PANI) were prepared by in-situ polymerization of melamine and formaldehyde. Stable microcapsules were prepared and the mean diameter of the observed microcapsules was in the range of $10-20{\mu}m$. The surface morphology and chemical structure of microcapsules were investigated using optical microscope (OM), scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FT-IR). The thermal properties of samples were investigated by thermogravimetric analysis (TGA). The conductivity of ruptured microcapsule containing the suspension of CNTs or PANIs in tetrachloroethylene and Isopar-G was measured. As the amount of CNTs and PANIs in the core of microcapsules increased, the measured current increased. Conductivity measurement results suggest that poly (melamine-formaldehyde) based core-shell microcapsules could be applied to self-healing electronic materials systems, where CNTs or PANIs bridge a broken circuit upon release.

Reliability Appraisal Standard for Lead-free Solder Bar (무연 솔더바에 대한 신뢰성 평가기준에 관한 연구)

  • Choi, Jai-Kyoung;Park, Jai-Hyun;Park, Hwa-Soon;Ahn, Yong-Sik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.2 s.43
    • /
    • pp.23-33
    • /
    • 2007
  • The growing environmental regulation governs the use of lead by RoHS, WEEE, and then. The electronic industry is moving to replace Pb-bearing solder with Pb-free solder. To use the Pb-free solder, microelectronic industry needs consequently the new reliability appraisal such as the packaging for high temperature process, various mechanical change caused by new solder, and the development of Pb-free sloder for long life of product. The evaluation of solder bar and mechanical properties of joint were performed compared with international standard, and new appraisal standard was established. The solderability and spread ability of Sn-0.7Cu solder material showed up to the standard. Shear test of solder joint using by the solder resulted that the shear strengths after thermal shock or after aging were not much lower than the shear strength of as-soldered and that they were also up to the standard.

  • PDF

A Synthesis of Mullite and Cordierite Ceramics by Solution-Polymerzation Route Based on PVA (PVA를 이용한 Solution-Polymerzation 합성법에 의한 Mullite, Cordierite 세라믹스의 합성)

  • 이용석;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.2
    • /
    • pp.151-157
    • /
    • 2004
  • Because of the excellent thermal and chemical properties of mullite and cordierite as the stable oxide ceramic materials, they were widely used from engineering materials to electronic materials. Notwithstanding of their high demands, mullite was synthesised because it is not existed in nature. It is also difficult to produce cordierite of fine powder with high purity due to the narrow range of synthetic temperature. Mullite was synthesised by solid state reaction. However, synthesized mullite has been inhomogeneous. Because of the facts, various synthetic methods have been studied so far including sol-gel method. The purpose of this study is to synthesis mullite and cordierite of fine powder with high purity at the lower temperature by solution-polymerization route using PVA as a polymer carrier, which is an economical method by using low cost materials. As a result, mullite and cordierite were produced with mono crystal phase at 1200$^{\circ}C$ and 1250$^{\circ}C$, respectively, and their surface area over 20 ㎡/g.

Properties of Low Operating Voltage MFS Devices Using Ferroelectric $LiNbO_3$ Film ($LiNbO_3$ 강유전체 박막을 이용한 저전압용 MFS 디바이스의 특징)

  • Kim, Kwang-Ho;Jung, Soon-Won;Kim, Chae-Gyu
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.11
    • /
    • pp.27-32
    • /
    • 1999
  • Metal-ferroelectric-semiconductor devices by susing rapid thermal annealed $LiNbO_3/Si$(100) structures were fabricated and demonstrated nonvolatile memory operations. The estimated field-effect electron mobility and transconductance on a linear region of the fabricated FET were about $600cm^2/V{\cdot}s$ and 0.16mS/mm, respectively. The ID-VG characteristics of MFSFET's showed a hysteresis loop due to the ferroelectric nature of the $LiNbO_3 films. The drain current of the on state was more than 4 orders of magnitude larger than the off state current at the same read gate voltage of 0.5V, which means the memory operation of the MFSFET. A write voltage as low as ${\pm}3V$, which is applicable to low power integrated circuits, was used for polarization reversal. The ferroelectric capacitors showed no polarization degradation up to $10^{10}$ switching cycles with the application of symmetric bipolar voltage pulse (peak-to-peak 6V, 50% duty cycle) of 500kHz.

  • PDF