• Title/Summary/Keyword: Electron-beam resist

Search Result 51, Processing Time 0.027 seconds

Measurements of Developed Patterns by Direct writing of Electron Beam on Different Materials underneath PMMA

  • June, Won-Chae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.3
    • /
    • pp.1-7
    • /
    • 2002
  • The developed patterns by direct writing of electron beam are measured by AFM, FESEM and optical profiler of WYKO NT3300. From different measurement methods, the measured linewidths of the patterns are shown a little bit wider than designed pattern size due to electrons scattering effect during direct writing of electron beam. The optimized conditions of these experiments are suggested and explained for the forming of structures below 0.1 ㎛ dimension size. Because of electron scattering effects from the different under layers such as Si, Si$_3$N$_4$ and aluminum, the developed pattern size is also influenced by the accelerated energy of electrons, dose, resist and soft and hard bake conditions in PMMA. The distributions of electron beam and calculations of backscattering coefficient are demonstrated by Monte Carlo simulation. From the measured results, the developed linewidth of PMMA/Al /silicon is shown a little bit wider than that of PMMA/Si$_3$N$_4$/silicon structure due to the backscattering effects.

A study on the resist characteristics of plasma polymerized thin film of (MMA-Sty-TMT) (플라즈마중합 (MMA-Sty-TMT) 박막의 레지스트 특성조사)

  • Park, J.K.;Park, S.H.;Park, B.G.;Jung, H.D.;Han, S.O.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1268-1270
    • /
    • 1994
  • Fine lithographic technology in a submicron design regime is necessary for the fabrication of VLSI circuits. In such lithography, fine pattern delineation is performed by electron beam, ion beam and X-ray lithography instead of photolithography. Therefore, the new resist materials and development method have been required. So, we are investigating another positive E-beam resists which have high sensitivity and dry etching resistance, Plasma co-polymerized resist was prepared using an interelectrode gas-flow-type reacter. Methymethacrylate, tetramethyltin and styrene were chosen as the monomer to be used. The delineated pattern in the resist was developed with gas-flow-type reactor using an argon and 02 as etching gas. We studied about the effects of discharge power and mixing rate of the co-polymerized thin :film. The molecular structure of thin film was investigated by ESCA and IR, and then was discussed in relation to its quality as a resist.

  • PDF

Effect of $Ga^+$ Ion Beam Irradiation On the Wet Etching Characteristic of Self-Assembled Monolayer ($Ga^+$ 이온 빔 조사량에 따른 자기 조립 단분자막의 습식에칭 특성)

  • Noh Dong-Sun;Kim Dea-Eun
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.326-329
    • /
    • 2005
  • As a flexible method to fabricate sub-micrometer patterns, Focused Ion Beam (FIB) instrument and Self-Assembled Monolayer (SAM) resist are introduced in this work. FIB instrument is known to be a very precise processing machine that is able to fabricate micro-scale structures or patterns, and SAM is known as a good etch resistance resist material. If SAM is applied as a resist in FIB processing fur fabricating nano-scale patterns, there will be much benefit. For instance, low energy ion beam is only needed for machining SAM material selectively, since ultra thin SAM is very sensitive to $Ga^+$ ion beam irradiation. Also, minimized beam spot radius (sub-tens nanometer) can be applied to FIB processing. With the ultimate goal of optimizing nano-scale pattern fabrication process, interaction between SAM coated specimen and $Ga^+$ ion dose during FIB processing was observed. From the experimental results, adequate ion dose for machining SAM material was identified.

  • PDF

A Study on Pattern Fabrication using Proximity Effect Correction in E-Beam Lithography (전자빔 리소그래피에서의 근접효과 보정을 이용한 패턴 제작에 관한 연구)

  • Oh, Se-Kyu;Kim, Dong-Hwan;Kim, Seung-Jae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.2
    • /
    • pp.1-10
    • /
    • 2009
  • This study describes the electron beam lithography pattern fabrication using the proximity effect correction. When electron beam exposes into electron beam resist, the beam tends to spread inside the substance (forward scattering). And the electron beam reflected from substrate spreads again (back scattering). These two effects influence to distribution of the energy and give rise to a proximity effect while a small pattern is generated. In this article, an electron energy distribution is modeled using Gaussian shaped beam distribution and those parameters in the model are computed to solidify the model. The proximity effect is analyzed through simulations and appropriate corrections to reducing the proximity effect are suggested. It is found that the proximate effect can be reduced by adopting schemes of dose adjustment, and the optimal dose is determined through simulations. The proposed corrected proximity effect correction is proved by experiments.

  • PDF

Direct Patterning of Self Assembled Nano-Structures of Block Copolymers via Electron Beam Lithography

  • Yoon Bo Kyung;Hwang Wonseok;Park Youn Jung;Hwang Jiyoung;Park Cheolmin;Chang Joonyeon
    • Macromolecular Research
    • /
    • v.13 no.5
    • /
    • pp.435-440
    • /
    • 2005
  • This study describes a method where the match of two different length scales, i.e., the patterns from self-assembled block copolymer (<50 nm) and electron beam writing (>50 nm), allow the nanometer scale pattern mask. The method is based on using block copolymers containing a poly(methyl methacrylate) (PMMA) block, which is subject to be decomposed under an electron beam, as a pattern resist for electron beam lithography. Electron beam on self assembled block copolymer thin film selectively etches PMMA microdomains, giving rise to a polymeric nano-pattern mask on which subsequent evaporation of chromium produces the arrays of Cr nanoparticles followed by lifting off the mask. Furthermore, electron beam lithography was performed on the micropatterned block copolymer film fabricated by micro-imprinting, leading to a hierarchical self assembled pattern where a broad range of length scales was effectively assembled, ranging from several tens of nanometers, through submicrons, to a few microns.

A Study on the Preparation and Resist Characterization of the Plasma Polymerized Thin Films (플라즈마중합막의제작과레지스트 특성에 관한 연구)

  • 이덕출;박종관;한상옥;김종석;조성욱
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.5
    • /
    • pp.802-808
    • /
    • 1994
  • The purpose of this paper is to describe an application of plasma polymerized thin film as an electron beam resist. Plasma polymerized thin film was prepared using an interelectrode capacitively coupled gas-flow-type reactor, and chosen methylmethacrylate(MMA)and methylmethacrylate-tetrameth-yltin(MMA-TMT) as a monomer. This thin films were also delineated by the electron-beam apparatus with an acceleration voltage of 30kV and an expose dose ranging from 20 to 900$\mu$C/cmS02T. The delineated pattern in the resist was developed with the same reactor which is used for polymerization using an argon as etching gas. The growth rate and etching rate of the thin film is increased with increasing of discharge power. Thin films by plasma polymerization show polymerization rate of 30~45($\pm$3) A/min, and etching rate of 440($\pm$30) A/min during Ar plasma etching at discharge power of 100W. In apparently lower than that of conventional PMMA, but the plasma-etching rate of PP(MMA-TMT) was higher than that of PPMMA.

  • PDF

The Study on the application of plasma co-polymerized (MMA-Styrene) thin film as E-beam resist (플라즈마중합법에 의한 (MMA+Styrene) 박막의 E-beam용 레지스트 특성에 대한 연구)

  • Jung, Y.;Park, J.K.;Park, S.K.;Park, J.Y.;Park, S.H.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1183-1185
    • /
    • 1993
  • The plasma polymerized thin film of MMA+Sty was prepared using a capacitively coupled gas-flow-type reactor. This thin films were also delincated by the electron-beam apparatus with an acceleration voltage 30KV, and the pattern in the resist was developed with the gas-flow-type reactor using an argon as an etchant. The effect of discharge power on groth rate and etching rate of the thin film were studied. The molacular structure of the resist was investigated by ESCA and FT-IR.

  • PDF

Fabrication of a Graphene Nanoribbon with Electron Beam Lithography Using a XR-1541/PMMA Lift-Off Process

  • Jeon, Sang-Chul;Kim, Young-Su;Lee, Dong-Kyu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.4
    • /
    • pp.190-193
    • /
    • 2010
  • This report covers an effective fabrication method of graphene nanoribbon for top-gated field effect transistors (FETs) utilizing electron beam lithography with a bi-layer resists (XR-1541/poly methtyl methacrylate) process. To improve the variation of the gating properties of FETs, the residues of an e beam resist on the graphene channel are successfully taken off through the combination of reactive ion etching and a lift-off process for the XR-1541 bi-layer. In order to identify the presence of graphene structures, atomic force microscopy measurement and Raman spectrum analysis are performed. We believe that the lift-off process with bi-layer resists could be a good solution to increase gate dielectric properties toward the high quality of graphene FETs.

High-Aspect-Ratio Nanoscale Patterning in a Negative Tone Photoresist

  • Ryoo, Kwangki;Lee, Jeong Bong
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.1
    • /
    • pp.56-61
    • /
    • 2015
  • The demand for high-aspect-ratio structures has been increasing in the field of semiconductors and other applications. Here, we present the commercially available negative-tone SU-8 as a potential resist that can be used for direct patterning of high-aspect-ratio structures at the submicron scale and the nanoscale. Such resist patterns can be used as polymeric molds to create high-aspect-ratio metallic submicron and nanoscale structures by using electroplating. Compared with poly (methyl methacrylate) (PMMA), we found that the negative tone resist required an exposure dose that was less than that of PMMA of equal thickness by a factor of 100-150. Patterning of up to 4:1 aspect ratio SU-8 structures with a minimum feature size of 500 nm was demonstrated. In addition, nanoimprint lithography was studied to further extend the aspect ratio to realize a minimum feature size of less than 10 nm with an extremely high aspect ratio in the negative resist.

Fabrication of Sub-Micron Size $Al-AlO_x-Al$ Tunnel Junction using Electron-Beam Lithography and Double-Angle Shadow Evaporation Technique (전자빔 패터닝과 double-angle 그림자 증착법을 이용한 sub-micron 크기의 $Al-AlO_x-Al$ 터널접합 제작공정개발)

  • Rehmana, M.;Choi, J.W.;Ryu, S.J.;Park, J.H.;Ryu, S.W.;Khim, Z.G.;Song, W.;Chong, Y.
    • Progress in Superconductivity
    • /
    • v.10 no.2
    • /
    • pp.99-102
    • /
    • 2009
  • We report our development of the fabrication process of sub-micron scale $Al-AlO_x-Al$ tunnel junction by using electron-beam lithography and double-angle shadow evaporation technique. We used double-layer resist to construct a suspended bridge structure, and double-angle electron-beam evaporation to form a sub-micron scale overlapped junction. We adopted an e-beam insensitive resist as a bottom sacrificing layer. Tunnel barrier was formed by oxidation of the bottom aluminum layer between the bottom and top electrode deposition, which was done in a separate load-lock chamber. The junction resistance is designed and controlled to be 50 $\Omega$ to match the impedance of the transmission line. The junctions will be used in the broadband shot noise thermometry experiment, which will serve as a link between the electrical unit and the thermodynamic unit.

  • PDF