• Title/Summary/Keyword: Electron-Beam Energy

Search Result 696, Processing Time 0.03 seconds

Electron Beam-Induced Modification of Poly(dimethyl siloxane) (전자빔을 이용한 Poly(dimethyl siloxane)의 개질)

  • Kang, Dong-Woo;Kuk, In-Seol;Jung, Chan-Hee;Hwang, In-Tae;Choi, Jae-Hak;Nho, Young-Chang;Mun, Sung-Yong;Lee, Young-Moo
    • Polymer(Korea)
    • /
    • v.35 no.2
    • /
    • pp.157-160
    • /
    • 2011
  • In this paper, poly (dimethyl siloxane) (PDMS) was modified using electron beam irradiation and its property was investigated. PDMS sheets prepared using a conventional thermal curing method were irradiated by electron beams at absorbed doses between 20 and 200 kGy and their properties were characterized using swelling degree and contact angle measurements, universal testing machine (UTM), thermogravimetric analyzer (TGA), and X -ray photoelectron spectrometer (XPS). The results of the swelling degree measurements, UTM, and TGA revealed that the swelling degree of the irradiated PDMS sheets was reduced down to 24% in comparison to the control sheet, and their compression strength and thermal decomposition temperature increased up to maximum 2.5 MFa and $10^{\circ}C$, respectively, due to the increase in crosslinking density by irradiation. In addition, on the basis of the results of contact angle measurements and XPS, the wettability of the PDMS sheets was enhanced up to 24% owing to the generation of hydrophilic functional groups on the PDMS surface by oxidation during electron beam irradiation.

Influences of degradation in MgO protective layer and phosphors on ion-induced secondary electron emission coefficient and static margins in alternating current plasma display panels

  • Jeong, H.S.;Lim, J.E.;Park, W.B.;Jung, K.B.;Choi, E.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.518-521
    • /
    • 2004
  • The degradation characteristics of MgO protective layer and phosphors have been investigated in terms of the ion-induced secondary electron emission coefficient ${\gamma}$ and static margin of discharge voltages, respectively, in this experiment. The ion-induced secondary electron emission coefficients ${\gamma}$ for the degraded MgO protective layer and phosphors have been studied by ${\gamma}$ -focused ion beam system. The energy of Ne+ ions used is from 80 eV to 200 eV in this experiment. The degraded MgO and phosphor layers are found to have higher ${\gamma}$ than that of normal ones without degradations or aged one. Also, the static margin of discharge voltages for test panels with degraded MgO protective layer and phosphors been found to be seriously decreased in comparison with those of normal ones without degradations.

  • PDF

A Study on clinical Considerations caused by inevitably Extended SSD for Electron beam therapy (확장된 SSD에 기인한 Electron beam의 Output 및 특성 변화에 관한 연구)

  • Lee, Jeong-U;Kim, Jeong-Man
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.8 no.1
    • /
    • pp.29-35
    • /
    • 1996
  • We are often faced with the clinical situations that is inevitably extended SSD for electron beam therapy due to anatomical restriction or applicator structure. But there are some difficulties in accurately predicting output and properties. In electron beam treatment , unlike photon beam the decrease in output for extended SSD does not follow inverse-square law accurately because of a loss of side scatter equilibrium, which is particularly significant for small cone size and low energies. The purpose of our study is to analyze the output in changing with the energy, cone size, air gap beyond the standard SSD and to compare inverse-square law factor derived from calculated effective SSD, mominal SSD with measured output factor. In addition, we have analyzed the change of PDD for several cones with different SSDs which range from 100cm to 120cm with 5cm step and with different energies(6MeV, 9MeV, 12MeV, 16MeV, 20MeV). In accordance with our study, an extended SSD produces a significant change in beam output, negligible change in depth dose which range from 100cm to 120cm SSDs. In order to deliver the more accurate dose to the neoplastic tissue, first of all we recommend inverse-square law using the table of effective SSDs with cone sizes and energies respectively or simply to create a table of extended SSD air gap correction factor. The second we need to have an insight into some change of dose distribution including PPD, penumbra caused by extended SSD for electron beam therapy.

  • PDF

A study on the electrom beam weldability of 9%Ni steel (II) - Effect of $a_b$ parameter on bead shape - (9%Ni 강의 전자빔 용접성에 관한 연구 II -비이드형상에 미치는$a_b$parameter의 영향)

  • 김숙환;강정윤
    • Journal of Welding and Joining
    • /
    • v.15 no.3
    • /
    • pp.88-98
    • /
    • 1997
  • Welding defects, such as porosity and spike, have sometimes occurred in deep penetration electron beam welds. These defects are known to be one of the serious problem in electron beam welds. So, effects of active parameters ($a_b$) on bead shape and occurrence of defects in electron beam welds of heavy section 9%Ni steel plates were investigated. Partial penetration welding in flat position, and deep penetration welding of 10 ~ 28mm depth were investigated in this study. It is desirable to select low accelerating voltage and above the surface focus position $a_b$$\geq$1.2 at which a wine-cup shaped bead is obtained to avoid the welding defects such as spike and root porosity. When the accelerating voltage of electron beam was low (90kV), active parameter ($a_b$) did not influence on the bead width, penetration depth and weld defects significantly. However, in case of high voltage ($\geq$120kV), active parameter ($a_b$) was sensitively associated with penetraton depth and weld defects, i.e. when the active parameter (($a_b$) was in the range of 0.6 to 1.0, the depth of penetration was always over the target (23mm), while the depth of penetration was dramatically decreased with further increase of active parameter ($a_b$). The weld defects were decreased with the increase of active parameter $a_b$ resulting in the decrease of energy density of the focused beam in the root part of fusion zone.

  • PDF

Target Size Dependence of Spatial Resolution in Heavy Ion CT

  • Ohno, Yumiko;Kohno, Toshiyuki;Kanai, Tatsuaki;Sasaki, Hitomi;Nanbu, Syuya
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.94-96
    • /
    • 2002
  • In order to achieve the radiotherapy more precisely using highly energetic heavy charged particles, it is important to know the distribution of the electron density in a human body, which is highly related to the range of charged particles. We can directly obtain the 2-D distribution of the electron density in a sample from a heavy ion CT image. For this purpose, we have developed a heavy ion CT system using a broad beam. The performance, especially the position resolution, of this system is estimated in this work. All experiments were carried out using the heavy ion beam from the HIMAC. We have obtained the projection data of polyethylene samples with various sizes using He 150 MeV/u, C 290 MeV/u and Ne 400 MeV/u beams. The used targets are the cylinders of 40, 60 and 80 mm in diameter, each of them has a hole of 10 mm in diameter at the center of it. The dependence of the spatial resolution on the target size and the kinds of beams will be discussed.

  • PDF

Mechanical Properties of Radiation-Curing Vinyl Ester Resin (방사선 경화 비닐에스터 수지의 기계적 특성 연구)

  • Shin, Bum-Sik;Jeun, Joon-Pyo;Kim, Hyun Bin;Kang, Phil-Hyun
    • Journal of Radiation Industry
    • /
    • v.4 no.1
    • /
    • pp.19-23
    • /
    • 2010
  • Vinyl ester (VE) resins, introduced in the late 1960s, have made large strides in reinforced plastics applications as adhesive and matrix materials on their appropriate mechanical performance characteristics in the glassy state. Generally, VE resins are a group of dimethacrylate resins based on bisphenol A type epoxy resin. They exhibit easy handling properties as well as good resistance to most chemical agents due to their mechanical and thermal properties. In this study, the effects of curing methods of vinyl ester resins on gel contents, flexural strength and dynamic mechanical properties were investigated. Thermal curing (room temperature, $80^{\circ}C$) and electron beam curing were used to crosslink a VE resin/styrene complex (65/35 wt%) with methyl ethyl ketone peroxide (MEKPO) as a catalyst and an 8 wt% cobalt naphthenate in styrene solution as a accelerator. For the samples, gel contents as well as flexural strength and dynamic mechanical properties were characterized and compared by soxhlet apparatus, universal testing machine (UTM) and dynamic mechanical analysis (DMA). As a result, the electron-cured VE resin was confirmed as a better condition than those for gel contents, flexural strength and dynamic mechanical properties, respectively.

Effect of Electron Irradiation on the Titanium Aluminium Nitride Thick Films (Titanium Aluminium Nitride 후막의 전자-빔 조사 효과)

  • Choe, Su-Hyeon;Heo, Sung-Bo;Kong, Young-Min;Kim, Daeil
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.6
    • /
    • pp.280-284
    • /
    • 2020
  • Electron beam irradiation is widely used as a type of surface modification technology to advance surface properties. In this study, the effect of electron beam irradiation on properties, such as surface hardness, wear resistance, roughness, and critical load of Titanium Aluminium nitride (TiAlN) films was investigated. TiAlN films were deposited on the SKD-61 substrate by using cathode arc ion plating. After deposition, the films were bombarded with intense electron beam for 10 minutes. The surface hardness was increased up to 4520 HV at electron irradiation energy of 1500 eV. In addition, surface root mean square (RMS) roughness of the films irradiated at 1500 eV shows the lowest roughness of 484 nm in this study.

Effect of Electron Irradiation on the Surface Hardness and Wear Characteristic of CrAlN Thin Film Deposited on the SKD61 Mold Steel (전자빔 조사에 따른 CrAlN/SKD61의 표면경도 및 내마모도 개선효과)

  • Eom, Tae-Young;Song, Young-Hwan;Choi, Su-Hyun;Choi, Jin-Young;Heo, Sung-Bo;Kim, Jun-Ho;Kim, Daeil
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.4
    • /
    • pp.164-168
    • /
    • 2017
  • Intense electron beam was irradiated on the CrAlN thin films deposited in SKD61 under different incident energies and then the effect of electron beam irradiation on the enhancement of surface hardness and wear resistance was investigated. Surface hardness and wear resistance of the CrAlN films is increased proportionally with the electron beam energy. While the surface hardness of as deposited CrAlN film is Hv ($0.1g{\cdot}f$) 450, the hardness oflectron irradiated (600 eV) film is Hv ($0.1g{\cdot}f$) 2050. The width of wear track of the untreated SKD61 is $X\_{\mu}m$, while the track-width of the electron irradiated CrAlN (600 eV) film is $787{\mu}m$, respectively. From the observed results, it is supposed that the optimal electron beam irradiation can be one of the useful surface treatment technologies for the enhancement of surface hardness and wear resistance of CrAlN/SKD61, simultaneously.

Characterization of Hydrogen Gas Sensitivity of TiO2 Thin Films with Electron Beam Irradiation (전자빔 열처리에 따른 TiO2 박막의 수소가스 검출 특성 연구)

  • Heo, S.B.;Lee, H.M.;Jung, C.W.;Kim, S.K.;Lee, Y.J.;Kim, Y.S.;You, Y.Z.;Kim, D.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.1
    • /
    • pp.31-36
    • /
    • 2011
  • $TiO_2$ films were deposited on a glass substrate with RF magnetron sputtering and then surface of $TiO_2$ films were electron beam irradiated in a vacuum condition to investigate the effect of electron bombardment on the thin film crystallization, surface roughness and gas sensitivity for hydrogen. $TiO_2$ films that electron beam irradiated at 450eV were amorphous phase, while the films irradiated at 900 eV show the anatase (101) diffraction peak in XRD pattern. AFM measurements show that the roughness is depend on the electron irradiation energy. As increase the hydrogen gas concentration and operation temperature, the gas sensitivity of $TiO_2$ and $TiO_2$/ZnO films is increased proportionally and $TiO_2$ films that electron beam irradiated at 900 eV show the higher sensitivity than the films were irradiated at 450eV. From the XRD pattern and AFM observation, it is supposed that the crystallization and rough surface promote the hydrogen gas sensitivity of $TiO_2$ films.