• 제목/요약/키워드: Electron trap center

검색결과 10건 처리시간 0.029초

Impact of Trap Position on Random Telegraph Noise in a 70-Å Nanowire Field-Effect Transistor

  • Lee, Hyunseul;Cho, Karam;Shin, Changhwan;Shin, Hyungcheol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제16권2호
    • /
    • pp.185-190
    • /
    • 2016
  • A 70-${\AA}$ nanowire field-effect transistor (FET) for sub-10-nm CMOS technology is designed and simulated in order to investigate the impact of an oxide trap on random telegraph noise (RTN) in the device. It is observed that the drain current fluctuation (${\Delta}I_D/I_D$) increases up to a maximum of 78 % due to the single electron trapping. In addition, the effect of various trap positions on the RTN in the nanowire FET is thoroughly analyzed at various drain and gate voltages. As the drain voltage increases, the peak point for the ${\Delta}I_D/I_D$ shifts toward the source side. The distortion in the electron carrier density and the conduction band energy when the trap is filled with an electron at various positions in the device supports these results.

Effective Interfacial Trap Passivation with Organic Dye Molecule to Enhance Efficiency and Light Soaking Stability in Polymer Solar Cells

  • Rasool, Shafket;Zhou, Haoran;Vu, Doan Van;Haris, Muhammad;Song, Chang Eun;Kim, Hwan Kyu;Shin, Won Suk
    • Current Photovoltaic Research
    • /
    • 제9권4호
    • /
    • pp.145-159
    • /
    • 2021
  • Light soaking (LS) stability in polymer solar cells (PSCs) has always been a challenge to achieve due to unstable photoactive layer-electrode interface. Especially, the electron transport layer (ETL) and photoactive layer interface limits the LS stability of PSCs. Herein, we have modified the most commonly used and robust zinc oxide (ZnO) ETL-interface using an organic dye molecule and a co-adsorbent. Power conversion efficiencies have been slightly improved but when these PSCs were subjected to long term LS stability chamber, equipped with heat and humidity (45℃ and 85% relative humidity), an outstanding stability in the case of ZnO/dye+co-adsorbent ETL containing devices have been achieved. The enhanced LS stability occurred due to the suppressed interfacial defects and robust contact between the ZnO and photoactive layer. Current density as well as fill factors have been retained after LS with the modified ETL as compared to un-modified ETL, owing to their higher charge collection efficiencies which originated from higher electron mobilities. Moreover, the existence of less traps (as observed from light intensity-open circuit voltage measurements and dark currents at -2V) are also found to be one of the reasons for enhanced LS stability in the current study. We conclude that the mitigation ETL-surface traps using an organic dye with a co-adsorbent is an effective and robust approach to enhance the LS stability in PSCs.

Effects of Fully Filling Deep Electron/Hole Traps in Optically Stimulated Luminescence Dosimeters in the Kilovoltage Energy Range

  • Chun, Minsoo;Jin, Hyeongmin;Lee, Sung Young;Kwon, Ohyun;Choi, Chang Heon;Park, Jong Min;Kim, Jung-in
    • Journal of Radiation Protection and Research
    • /
    • 제47권3호
    • /
    • pp.134-142
    • /
    • 2022
  • Background: This study investigated the characteristics of optically stimulated luminescence dosimeters (OSLDs) with fully filled deep electron/hole traps in the kV energy ranges. Materials and Methods: The experimental group consisted of InLight nanoDots, whose deep electron/hole traps were fully filled with 5 kGy pre-irradiation (OSLDexp), whereas the non-pre-irradiated OSLDs were arranged as a control group (OSLDcont). Absorbed doses for 75, 80, 85, 90, 95, 100, and 105 kVp with 200 mA and 40 ms were measured and defined as the unit doses for each energy value. A bleaching device equipped with a 520-nm long-pass filter was used, and the strong beam mode was used to read out signal counts. The characteristics were investigated in terms of fading, dose sensitivities according to the accumulated doses, and dose linearity. Results and Discussion: In OSLDexp, the average normalized counts (sensitivities) were 12.7%, 14.0%, 15.0%, 10.2%, 18.0%, 17.9%, and 17.3% higher compared with those in OSLDcont for 75, 80, 90, 95, 100, and 105 kVp, respectively. The dose accumulation and bleaching time did not significantly alter the sensitivity, regardless of the filling of deep traps for all radiation qualities. Both OSLDexp and OSLDcont exhibited good linearity, by showing coefficients determination (R2) > 0.99. The OSL sensitivities can be increased by filling of deep electron/hole traps in the energy ranges between 75 and 105 kVp, and they exhibited no significant variations according to the bleaching time.

TEM investigation of helium bubble evolution in tungsten and ZrC-strengthened tungsten at 800 and 1000℃ under 40keV He+ irradiation

  • I. Ipatova;G. Greaves;D. Terentyev;M.R. Gilbert;Y.-L. Chiu
    • Nuclear Engineering and Technology
    • /
    • 제56권4호
    • /
    • pp.1490-1500
    • /
    • 2024
  • Helium-induced defect nucleation and accumulation in polycrystalline W and W0.5 wt%ZrC (W0.5ZrC) were studied in-situ using the transmission electron microscopy (TEM) combined with 40 keV He+ irradiation at 800 and 1000℃ at the maximum damage level of 1 dpa. Radiation-induced dislocation loops were not observed in the current study. W0.5ZrC was found to be less susceptible to irradiation damage in terms of helium bubble formation and growth, especially at lower temperature (800 ℃) when vacancies were less mobile. The ZrC particles present in the W matrix pin the forming helium bubbles via interaction between C atom and neighbouring W atom at vacancies. This reduces the capability of helium to trap a vacancy which is required to form the bubble core and, as a consequence, delays, the bubble nucleation. At 1000 ℃, significant bubble growth occurred in both materials and all the present bubbles transitioned from spherical to faceted shape, whereas at 800 ℃, the faceted helium bubble population was dominated in W.

Cathodoluminescence Enhancement of CaTiO3:Pr3+ by Ga Addition

  • Kang, Seung-Youl;Byun, Jung-Woo;Kim, Jin-Young;Suh, Kyung-Soo;Kang, Seong-Gu
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권5호
    • /
    • pp.566-568
    • /
    • 2003
  • The phosphor $CaTiO_3:Pr^{3+}$ attracts much attention as a low-voltage red phosphor because of its good chromaticity and intrinsic conductivity. The addition of Ga into this CaTiO₃:Pr led the luminance intensity to greatly enhance without the change of the wavelength for the electronic transition and the peak shape of it. The increase of the recombination rate of electron-hole pairs through the Ga ion doping, which was expected to play a role of a hole-trap center, is proposed to be one of the reasons for the enhancement of the cathodoluminescence intensity.

AlGaN/GaN HEMT의 트랩에 의한 DC 출력 특성 전산모사 (The Impact of traps on the DC Characteristics of AlGaN/GaN HEMT)

  • 정강민;김수진;김재무;김동호;이영수;최홍구;한철구;김태근
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.76-76
    • /
    • 2008
  • 갈륨-질화물(GaN) 기반의 고속전자이동도 트랜지스터(high electron mobility transistor, HEMT)는 최근 마이크로파 또는 밀리미터파 등의 고주파 대역의 통신시스템에 널리 사용되는 전자소자이자, 차세대 고주파용 전력 소자로 각광받고 있다. AlGaN/GaN HEMT에서 AlGaN층과 GaN층의 이종접합 구조(heterostructure)는 두 물질 간의 큰 전도대의 불연속성으로 인해 발생하는 이차원 전자가스(two-dimensional electron gas, 2DEG) 채널을 이용하여 높은 전자이동도, 높은 항복전압 및 우수한 고출력 특성을 얻는 것이 가능하다. 그러나 이린 이론적인 우수한 특성에도 불구하고 실제 AlGaN/GaN HEMT 소자에서는 AlGaN 표면과 AlGaN과 GaN 층 사이 접합면, AlGaN과 GaN 벌크층에 존재하는 트랩의 영향으로 이론보다 낮은 DC 출력 특성을 갖는다. 본 논문에서는 표면, 접합면, 벌크 층에 존재하는 트랩들을 각각의 존재 유무에 따라 시뮬레이션 함으로써 각각의 트랩이 DC 특성에 미치는 영향에 대해서 알아본다. 또한 소스와 게이트, 드레인과 게이트간의 거리에 따라 표면 트랩에 따른 영향과 AlGaN층과 GaN 층의 두께를 변화시켜가면서 각 층의 두께에 따라 벌크 트랩이 DC 특성에 미치는 영향을 알아보았다. 본 논문에서 트랩에 따른 특성의 파악을 위해서 $ATLAS^{TM}$를 이용하여 전산모사 하였다.

  • PDF

Numerical analysis of particle transport in low-pressure, low-temperature plasma environment

  • Kim, Heon Chang
    • 한국입자에어로졸학회지
    • /
    • 제5권3호
    • /
    • pp.123-131
    • /
    • 2009
  • This paper presents simulation results of particle transport in low-pressure, low-temperature plasma environment. The size dependent transport of particles in the plasma is investigated with a two-dimensional simulation tool developed in-house for plasma chamber analysis and design. The plasma model consists of the first two and three moments of the Boltzmann equation for ion and electron fluids respectively, coupled to Poisson's equation for the self-consistent electric field. The particle transport model takes into account all important factors, such as gravitational, electrostatic, ion drag, neutral drag and Brownian forces, affecting the motion of particles in the plasma environment. The particle transport model coupled with both neutral fluid and plasma models is simulated through a Lagrangian approach tracking the individual trajectory of each particle by taking a force balance on the particle. The size dependant trap locations of particles ranging from a few nm to a few ${\mu}m$ are identified in both electropositive and electronegative plasmas. The simulation results show that particles are trapped at locations where the forces acting on them balance. While fine particles tend to be trapped in the bulk, large particles accumulate near bottom sheath boundaries and around material interfaces, such as wafer and electrode edges where a sudden change in electric field occurs. Overall, small particles form a "dome" shape around the center of the plasma reactor and are also trapped in a "ring" near the radial sheath boundaries, while larger particles accumulate only in the "ring". These simulation results are qualitatively in good agreement with experimental observation.

  • PDF

새로운 $Tb^{3+}$ 이온 활성 축광성 형광체의 발광 특성 (Luminescence properties of a new $Tb^{3+}$ ion activated long persistent phosphor)

  • 박병석;최종건
    • 한국결정성장학회지
    • /
    • 제19권3호
    • /
    • pp.130-134
    • /
    • 2009
  • 새로운 $CaZrO_3$, 축광성 형광체를 고온의 약한 환원 분위기에서 전통적인 고상반응법으로 합성하였다 광발광 분석 결과 $Tb^{3+}$ 이온을 첨가한 $CaZrO_3$ 축광성 형광체는 $^5D_3$, $^5D_4$ 에너지 준위에서 $^7F_1{\sim}^7F_6$ 준위로의 전이에 의해 황녹색의 발광을 나타내며, 고온의 질소분위기에서 합성한 경우의 축광성 형광체에 대한 스펙트럼의 주 피크는 $^5D_4{\rightarrow}^7F_5$ 전이에 의한 542 nm의 발광 피크가 생성되었다. $CaZrO_3:Tb^{3+}$ 축광성 형광체의 잔광 발광 스펙트럼은 좁은 영역의 546 nm의 피크가 강하게 생성되었다 잔광 휘도는 254 nm 자외선을 조사하고 전원을 끈 후에 측정하였으며, 녹황색의 축광성 형광체가 사람이 어두운 곳에서 인지 가능한 $0.32\;mcd/m^2$까지 8시간 지속됨을 관찰하였다.

대식세포가 β-tricalcium Phosphate 뼈이식제의 생분해에 미치는 영향 (Effects of Macrophage on Biodegradation of β-tricalcium Phosphate Bone Graft Substitute)

  • 김영희;;변인선;오익현;민영기;양훈모;이병택;송호연
    • 한국세라믹학회지
    • /
    • 제45권10호
    • /
    • pp.618-624
    • /
    • 2008
  • Various calcium phosphate bioceramics are distinguished by their excellent biocompatibility and osteoconductivity. Especially, the exceptional biodegradability of $\beta$-TCP makes it a bone graft substitute of choice in many clinical applications. The activation of osteoclasts, differentiated from macrophage precursor cells, trigger a cell-mediated resorption mechanism that renders $\beta$-TCP biodegradable. Based on this evidence, we studied the biodegradation process of granular-type $\beta$-TCP bone graft substitute through in vitro and in vivo studies. Raw 264.7 cells treated with RANKL and M-CSF differentiated into osteoclasts with macrophage-like properties, as observed with TRAP stain. These osteoclasts were cultured with $\beta$-TCP nano powders synthesized by microwave-assisted process. We confirmed the phagocytosis of osteoclasts by observing $\beta$-TCP particles in their phagosomes via electron microscopy. No damage to the osteoclasts during phagocytosis was observed, nor did the $\beta$-TCP powders show any sign of cytotoxicity. We also observed the histological changes in subcutaneous tissues of rats implanted with granule-type $\beta$-TCP synthesized by fibrous monolithic process. The $\beta$-TCP bone graft substitute was well surrounded with fibrous tissue, and 4 months after implantation, 60% of its mass had been biodegraded. Also, histological findings via H&E stain showed a higher level of infiltration of lymphocytes as well as macrophages around the granule-type $\beta$-TCP. From the results, we have concluded that macrophages play an important role in the biodegradation process of $\beta$-TCP bone graft substitutes.

ESR-Spin Trapping Detection of Radical Center Formed on the Reaction of Metmyoglobin with Hydrogen Peroxide

  • Jeong, Sang-Hyeon;Hong, Sun-Joo
    • BMB Reports
    • /
    • 제28권4호
    • /
    • pp.293-300
    • /
    • 1995
  • The radical centers detected in the reaction of metmyoglobin (MetMb) with hydrogen peroxide ($H_2O_2$) have been studied by using a spin trapping technique. A broad 5-line asymmetric electron spin resonance (ESR) spectrum, with $2A_{max}=4.07\;mT$ and $2A_{min}=2.97\;mT$, obtained after incubation of MetMb with $H_2O_2$ in the presence of a spin trap, 5,5-dimethyl pyrroline-N-oxide (DMPO) was gradually weakened with time and disappeared completely by 6 min after addition of guanidine-HCl (14 M). When a higher concentration (6 M) of the agent was added, the signal disappeared within 40 see and the DMPO/OH signal appeared immediately. Then, a new 8-line signal with similar intensities grew gradually and was fixed by 45 min, coexisting with the DMPO/OH signal. This new signal was found to be composite, consisting of two different radical species. One of the 6-line signals, with $a_N$ 1.49 mT and $a_H$ 0.988 mT, was assigned to the DMPO/phenoxyl radical adduct. The second 6-line signal with $a_N$ 1.55 mT and $a_H$ 2.22 mT was assigned to carbon-centered radical adduct. When 3,3,5,5-tetramethylpyrrolin-N-oxide (TMPO), was employed in the place of DMPO, another broad asymmetric 5-line signal was detected with $2A_{max}=3.99\;mT$ and $2A_{min}=3.04\;mT$, which is virtually identical to that obtained from the DMPO system The shape of the spectrum of the TMPO adduct changed drastically, with lapse of time resulting in a broad singlet after 40 min. The broad singlet was assigned to the porphyrin radical adduct. Incubation of globin with Fenton reagent in the presence of DMPO initially gave a DMPO/OH signal. Then, a new 12-line signal began to grow after one minute and fixed after 15 min. coexisting with the DMPO/OH signal, This 12-line signal was assigned to DMPO/phenoxyl with $a_N$ 1.47 mT, $a_{{\beta}H}$ 0.99 mT and $a_{{\gamma}H}$ 0.13 mT. A minor concentration of carbon-centered radical adduct was also detected. This radical composition is identical to that of guanidine HCl treated MetMb/DMPO/$H_2O_2$ system, indicating that the radical producing conditions are somehow common in both systems. Heme iron can be released by excess $H_2O_2$ in the MetMb/$H_2O_2$ system, providing for Fenton reagent. When MetMb was pretreated with tyrosine blocking agent, $KI_3$ the broad 5.line MetMb-derived signal was not detected in the MetMb/DMPO/$H_2O_2$ system, whereas no such effect was detected on such system of Hb in which the radical center was assigned to cysteine residue not tyrosine, indicating that tyrosine residue is a main radical center produced in the MetMb/$H_2O_2$ system Thus, the present data strongly support the previous indication that the apomyoglobin-derived radical center formed in the reaction of MetMb with $H_2O_2$ is a tyrosine residue.

  • PDF