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Abstract—A 70-Å nanowire field-effect transistor 
(FET) for sub-10-nm CMOS technology is designed 
and simulated in order to investigate the impact of an 
oxide trap on random telegraph noise (RTN) in the 
device. It is observed that the drain current 
fluctuation (ΔID/ID) increases up to a maximum of 
78 % due to the single electron trapping. In addition, 
the effect of various trap positions on the RTN in the 
nanowire FET is thoroughly analyzed at various 
drain and gate voltages. As the drain voltage increases, 
the peak point for the ΔID/ID shifts toward the source 
side. The distortion in the electron carrier density and 
the conduction band energy when the trap is filled 
with an electron at various positions in the device 
supports these results.    
 
Index Terms—Nanowire field-effect transistor, 
random telegraph noise, TCAD   

I. INTRODUCTION 

As the feature size of the modern field-effect 
transistors (FETs) is scaled down below 10 nm, the short 
channel effect in the electron devices is one of the most 
difficult technical challenges. As the critical dimensions 

shrink to a few nanometers, non-conventional device 
structures that can successfully suppress the short 
channel effect have been proposed. For example, double-
gate FinFET [1, 2], Fully-Depleted Silicon-on-Insulator 
(FD-SOI) MOSFET [3, 4], and gate-all-around (GAA) 
MOSFET [5-10] have attracted much attention in the 
industry. Among them, the nanowire FET has the highest 
gate-to-channel capacitive coupling primarily because 
the channel is surrounded and controlled by the gate in 
all directions, and therefore, silicon nanowire 
architecture is the most attractive structure for sub-10-nm 
CMOS technology. 

Because even the extremely scaled sub-10-nm device 
has several defects, random telegraph noise (RTN) 
created by an oxide trap plays an important role in 
analyzing device performance [11-13]. The sub-10-nm 
nanowire FET should be designed considering the impact 
of oxide traps on its performance. However, there is 
currently no study on the impact of RTN created by a 
single-trap in a 70-Å nanowire FET, to the best of 
authors’ knowledge. In this work, the critical effect of a 
single trap on the performance variation of a 70-Å 
nanowire FET is discussed in detail, and the impact of 
various oxide trap positions on the drain current 
fluctuation is quantitatively analyzed. 

II. NANOWIRE FET DESIGN AND SIMULATION 

APPROACH 

Based on the international technology roadmap for 
semiconductor (ITRS), the nanowire FET design (Fig. 
1(a) and (b)) for low-power sub-10-nm technology is 
optimized using three-dimensional (3-D) device 
simulations by selecting a channel length of 70 Å, a 
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radius of 20 Å, a source/drain doping concentration of 
1020 cm-3 to achieve a maximum drive current for an 
effective oxide thickness (EOT) of 10 Å, a gate work-
function of 4.62 eV, and an off-state leakage current 
specification of ~ 10 pA/μm at 0.7 V power supply 
voltage. The input characteristic curves (i.e., drain 
current vs. gate voltage) for three different drain voltages 
are shown in Fig. 1(c) with sub-threshold slope (SS) of 
70 mV/dec and an on-state saturation drive current of 
~145 μA/μm. 

To investigate the effect of the trap position on RTN in 
the nanowire FET, a single trap is placed at (rT, xT), 
where rT indicates the distance from the Si-SiO2 interface 
to the trap, and xT represents the distance from the source 
edge to the trap in the x-direction. Then, the drain current 
fluctuation in the nanowire FET is simulated for 
acceptor-like trap occupancy. The quantum confinement 
effect in the channel is taken into account using the van 
Dort quantization model. Also, the mobility values are 
concurrently adjusted with local doping concentrations, 
the degree of high field saturation, and the intensity of 
normal electric field. 

III. RESULTS AND DISCUSSION 

When a trap is filled with an electron captured from 
the channel, the threshold voltage in the 70-Å nanowire 

FET increases by ~50 mV (Fig. 2(a)), so that there exists 
a non-negligible amount of drain current fluctuation 
(ΔID). Fig. 2(b) shows the conduction band diagram 
along the channel for the empty (black) and filled (red) 
trap conditions for the two different trap positions of xT = 
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Fig. 2. (a) ID-VG with an empty trap (black) and a filled trap 
(red). Note that the trap is located in the middle of the channel 
(i.e., xT = 35 Å) near the Si-SiO2 interface (i.e., rT = 1 Å), (b) 
Conduction band shape along the channel for the empty (black) 
and filled (red) trap conditions for the two different trap 
positions of xT = 5 Å and 35 Å. Note that rT = 1 Å, (c) Contour 
plots for the electron current density along the channel when 
the trap at rT = 1 Å, xT = 35 Å is empty (see left-hand side) or 
filled (see right-hand side) at VG=0.25 V. 
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Fig. 1. (a) Three-dimensional bird’s-eye view of the nanowire 
FET (channel length = 70 Å, radius = 20 Å), (b) Cross-sectional 
view of the nanowire FET, (c) Input characteristic curves (ID-
VG) for three different drain voltages (i.e., 0.05 V, 0.4 V, and 
0.7 V). 
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5 Å and 35 Å (rT = 1 Å). The single electron captured at 
the trap significantly raises the conduction band energy 
level (see the two red-colored curves in Fig. 2(b)) by 
~0.2 eV. The impact of the single trap, filled with the 
captured electron, on the electron current density is 
clearly depicted in Fig. 2(c). The two contour plots on the 
left-hand side in Fig. 2(c) show the electron current 
density with the empty trap site in the r-x (upper) and ry-
rz (lower) planes. On the right-hand side, the two contour 
plots show the electron current density with the filled 
trap site. When present, the single trap should 
significantly affect the drain current in the channel. 
Quantitatively, ΔID/ID is ~78%, as shown in Fig. 3(a).  

To investigate the effect of the trap position on the 
drain current, rT is first varied from 1 Å to 9 Å for xT = 
35 Å. As shown in Fig. 3(a), the drain current varies 
between 13 % and 78% at VG = 0.05 V. The performance 
variation in the 70-Å nanowire FET intensifies when the 

trap is close to the channel. The proximity of the trap to 
the Si-SiO2 interface significantly distorts the channel 
potential, resulting in the local variation of the current 
density (Fig. 3(b)). As is also shown in Fig. 3(a), the 
amplitude of RTN (i.e., the drain current fluctuation) 
becomes large when the nanowire FET operates in the 
sub-threshold region. This increase indicates that the 
channel potential is more sensitive to the trap because the 
gate-to-channel controllability is relatively smaller in the 
sub-threshold region. 

Fig. 4(a) shows the effect of trap position along the 
channel (i.e., in the x-direction from the source to the 
drain) on the drain current fluctuation at a drain voltage 
of 0.05 V with the trap located near the Si-SiO2 interface 
at 1 Å (i.e., rT = 1 Å). Interestingly, ΔID/ID for xT = 5 Å 
and 65 Å (or 15 Å and 55 Å, or 25 Å and 45 Å) are 
almost same because of the symmetric conduction band 
in the channel (black-colored line in Fig. 4(b)). However, 
as the drain voltage increases, the conduction band 
diagram becomes asymmetric (i.e., the conduction band 
edge is lower on the drain side than on the source side), 
and therefore, the peak point for ΔID/ID is shifted toward 
the source side (Fig. 4(c)). Moreover, conduction band 
distortion due to the proximity of the trap to the source 
side (vs. the trap in the middle of the channel) occurs 
when the gate voltage increases from 0.25 V to 0.7 V 
(Fig. 4(b) and (d)). Hence, the impact of the trap position 
near the source and the Si-SiO2 interface would be the 
most significant when the nanowire FET is operating in 
saturation mode. 

IV. CONCLUSIONS 

The effect of a single trap on the device performance 
in a 70-Å silicon nanowire FET has been investigated 
using 3-D TCAD simulations. The impact of the position 
of the trap on the drain current fluctuation has been 
quantitatively analyzed. The highest drain current 
variation (i.e., ΔID/ID ~ 78%) was observed when the trap 
was placed near the source side and close to Si-SiO2 
interface. Finally, the peak point for the ΔID/ID was 
shown to shift from the middle of the channel toward the 
source side with an increase in the drain voltage. 
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Fig. 3. (a) ΔID/ID vs. VG with rT = 1 Å to 9 Å in increments of 1 
Å for xT = 35 Å, (b) Contour plot for the current density with rT
= 1 Å to 9 Å in increments of 2 Å. Note that a lower current 
density flows near the trap (rT, xT) = (1 Å, 35 Å) because of 
increased distortion in the channel potential by the single filled 
trap resulting in a locally high threshold voltage. 
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Fig. 4. (a) ΔID/ID vs. VG with different values of xT from 5 Å to 
65 Å in increments of 10 Å. Note that rT is 1 Å, (b) Conduction 
band diagram with an empty (black) or a filled (red) trap at VD
= 0.7 V and VG = 0.25 V. Note that two trap positions are 
shown within the nanowire FET, (c) ΔID/ID vs. xT with various 
drain voltages (i.e., 0.05 V, 0.4 V, and 0.7 V), (d) Conduction 
band diagram with an empty (black) and a filled (red) trap at 
VD = 0.05 V and VG = 0.7 V. 
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