• 제목/요약/키워드: Electron transport layer

검색결과 272건 처리시간 0.033초

최적화된 전자 수송층을 활용한 완전한 용액공정 기반 녹색 유기발광다이오드 (Fully Solution-Processed Green Organic Light-Emitting Diodes Using the Optimized Electron Transport Layers)

  • 한주원;김용현
    • 한국전기전자재료학회논문지
    • /
    • 제31권7호
    • /
    • pp.486-489
    • /
    • 2018
  • Solution-processed organic light-emitting diodes (OLEDs) have the advantages of low cost, fast fabrication, and large-area devices. However, most studies on solution-processed OLEDs have mainly focused on solution-processable hole transporting materials or emissive materials. Here, we report fully solution-processed green OLEDs including hole/electron transport layers and emissive layers. The electrical and optical properties of OLEDs based on solution-processed TPBi (2,2',2"-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole)) as the electron transport layer were investigated with respect to the spin speed and the number of layers. The performance of OLEDs with solution-processed TPBi exhibits a power efficiency of 9.4 lm/W. We believe that the solution-processed electron transport layers can contribute to the development of efficient fully solution-processed multilayered OLEDs.

Characteristic Improvements of Organic Light Emitting Diodes By Using Co-Evaporated Cathodes

  • Kwak, Y.H.;Lee, Y.S.;Park, J.H.;Choi, Jong-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.710-713
    • /
    • 2002
  • In order to improve the power efficiency of multi-layer organic light emitting diodes (OLEDs), electron injection into ETL(electron transport layer) from cathode at the interface between ETL and cathode was enhanced by interposing a proper electron injection layer at the interface. The HTL(hole transport layer) and ETL materials used were N, N'diphenyl- N, N' - bis(3-methylphenyl-1, 1'- biphenyl - 4, 4 'diamine (TPD) and tris (8-hydroxyquinoline) aluminum ($Alq_3$) respectively. Cathodes using co-evaporated Al-CsF, Al-KF, and Al-NaF composites are adopted to enhance the electrical and optical properties of OLEDs. OLEDs with alkaline metal-doped cathode show a luminance of as high as 35,000 cd/$m^2$, and external quantum efficiency about 1.35 %. In addition, they show higher power efficiency at all bias conditions and good reproducibility.

  • PDF

Device characteristics of blue phosphorescent organic light-emitting diodes depending on the electron transport materials

  • Lee, Hyun-Koo;Ahn, Hyuk;Lee, Chang-Hee
    • Journal of Information Display
    • /
    • 제12권4호
    • /
    • pp.219-222
    • /
    • 2011
  • Iridium-(III)-bis[(4,6-di-fluorophenyl)-pyridinate-N,$C^2$' ]picolinate-based blue phosphorescent organic light-emitting diodes with different electron transport materials were fabricated. Each electron transport material had different electron mobilities and triplet energies. The device with 1,3,5-tri(m-pyrid-3-yl-phenyl)benzene had the highest external quantum efficiency (20.1%) and luminous current efficiency (33.1 cd/A) due to its high electron mobility and triplet energy. The operational stability of each device was also compared with that of the others. The device with 2,2',2"(1,3,5-benzenetriyl)tris-(1-phenyl-1H-benzimidazole) was found to have a longer lifetime than the other devices.

Performance of Three-Layered Organic Light-Emitting Diodes Using the Hole-Transport and Injection Layer of TPD and Teflon-AF, and the Electron-Injection Layer of Li2CO3 and LiF

  • Shin, Jong Yeol;Kim, Tae Wan;Kim, Gwi Yeol;Lee, Su Min;Hong, Jin Woong
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권2호
    • /
    • pp.89-92
    • /
    • 2017
  • The performance of three-layered organic light-emitting diodes (OLEDs) was investigated using TPD hole-transport and injection layers, Teflon-AF, and the electron-injection layer of $Li_2CO_3$ and LiF. The OLEDs were manufactured in a structure of TPD/$Alq_3$/LiF, TPD/$Alq_3$/$Li_2CO_3$, and AF/$Alq_3$/LiF using low-molecular organic materials. In three different three-layered OLEDs, it was found that the device with the TPD/$Alq_3$/LiF structure shows higher performance in maximum luminance, and maximum external quantum efficiency compared to those of the device with TPD/$Alq_3$/$Li_2CO_3$ and TPD/$Alq_3$/LiF by 35% and 17%, and 193% and 133%, respectively. It is thought that the combined LiF/Al cathode contributes to a reduced work function and improves an electrical conduction mechanism due to the electron injection rather than the hole transport, which then increases a recombination rate of charge carriers.

ZnO 박막 전자수송층의 공기 노출에 의한 양자점 발광다이오드의 특성 변화 (Effect of Air Exposure on ZnO Thin Film for Electron Transport Layer of Quantum Dot Light-Emitting Diode )

  • 서은용;이경재;황정하;김동현;임재훈;이동구
    • 센서학회지
    • /
    • 제32권6호
    • /
    • pp.455-461
    • /
    • 2023
  • We investigated the electrical characteristics of ZnO nanoparticles (NPs) with air exposure that is a widely used electron transport layer for quantum dot light-emitting diodes (QLEDs). Upon air exposure, we observed changes in the density of states (DOS) of the trap levels of ZnO NPs. In particular, with air exposure, the concentration of deep trap energy levels in ZnO NPs decreased and electron mobility significantly improved. Consequently, the air-exposed ZnO reduced leakage current by approximately one order of magnitude and enhanced the external quantum efficiency at the low driving voltage region of the QLED. In addition, based on the excellent conductivity properties, high-brightness QLEDs could be achieved.

High performance of inverted polymer solar cells

  • Lee, Hsin-Ying;Lee, Ching-Ting;Huang, Hung-Lin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.61.2-61.2
    • /
    • 2015
  • In the past decades, green energy, such as solar energy, wind power, hydropower, biomass energy, geothermal energy, and so on, has been widely investigated and developed to solve energy shortage. Recently, organic solar cells have attracted much attention, because they have many advantages, including low-cost, flexibility, light weight, and easy fabrication [1-3]. Organic solar cells are as a potential candidate of the next generation solar cells. In this abstract, to improve the power conversion efficiency and the stability, the inverted polymer solar cells with various structures were developed [4-6]. The novel cell structures included the P3HT:PCBM inverted polymer solar cells with AZO nanorods array, with pentacene-doped active layer, and with extra P3HT interfacial layer and PCBM interfacial layer. These three difference structures could respectively improve the performance of the P3HT:PCBM inverted polymer solar cells. For the inverted polymer solar cells with AZO nanorods array as the electronic transportation layer, by using the nanorod structure, the improvement of carrier collection and carrier extraction capabilities could be expected due to an increase in contact area between the nanorod array and the active layer. For the inverted polymer solar cells with pentacene-doped active layer, the hole-electron mobility in the active layer could be balanced by doping pentacene contents. The active layer with the balanced hole-electron mobility could reduce the carrier recombination in the active layers to enhance the photocurrent of the resulting inverted polymer solar cells. For the inverted polymer solar cells with extra P3HT and PCBM interfacial layers, the extra PCBM and P3HT interfacial layers could respectively improve the electron transport and hole transport. The extra PCBM interfacial layer served another function was that led more P3HT moving to the top side of the absorption layer, which reduced the non-continuous pathways of P3HT. It indicated that the recombination centers could be further reduced in the absorption layer. The extra P3HT interfacial layer could let the hole be more easily transported to the MoO3 hole transport layer. The high performance of the novel P3HT:PCBM inverted polymer solar cells with various structures were obtained.

  • PDF

원자층 증착법과 용액 공정법으로 성장한 전자 수송층 산화주석 박막의 페로브스카이트 태양전지 특성 (Characteristics of Tin Oxide Thin Film Grown by Atomic Layer Deposition and Spin Coating Process as Electron Transport Layer for Perovskite Solar Cells)

  • 김기현;정성진;양태열;임종철;장효식
    • 한국재료학회지
    • /
    • 제33권11호
    • /
    • pp.475-481
    • /
    • 2023
  • Recently, the electron transport layer (ETL) has become one of the key components for high-performance perovskite solar cell (PSC). This study is motivated by the nonreproducible performance of ETL made of spin coated SnO2 applied to a PSC. We made a comparative study between tin oxide deposited by atomic layer deposition (ALD) or spin coating to be used as an ETL in N-I-P PSC. 15 nm-thick Tin oxide thin films were deposited by ALD using tetrakisdimethylanmiotin (TDMASn) and using reactant ozone at 120 ℃. PSC using ALD SnO2 as ETL showed a maximum efficiency of 18.97 %, and PSC using spin coated SnO2 showed a maximum efficiency of 18.46 %. This is because the short circuit current (Jsc) of PSC using the ALD SnO2 layer was 0.75 mA/cm2 higher than that of the spin coated SnO2. This result can be attributed to the fact that the electron transfer distance from the perovskite is constant due to the thickness uniformity of ALD SnO2. Therefore ALD SnO2 is a candidate as a ETL for use in PSC vacuum deposition.

청색인광 OLED의 재결합 영역에 관한 연구 (Study on recombination zone of blue phosphorescent OLED)

  • 김태용;문대규
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.305-306
    • /
    • 2009
  • In this study, we have invastigated the recombination zone in the blue phosphorescent organic light-emitting devices with various partially doped structures. The basic device structure of the blue PHOLED was anode / hole injection layer (HIL) / hole transport layer (HTL) / emittingvastigated the recombination zone in the blue layer (EML) / hole blocking layer (HBL) / electron transport layer (ETL) / electron injection layer (EIL) / cathode. After the preparation of the blue PHOLED, the current density (J) - voltage (V) - luminance (L) and current efficiency characteristics were measured.

  • PDF

Electron Transport Properties of Zn(phen)q Compared with Alq3 in OLED

  • Kim, Byoung-Sang;Kim, Dong-Eun;Choi, Gyu-Chae;Park, Jun-Woo;Lee, Burm-Jong;Kwon, Young-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권3호
    • /
    • pp.418-422
    • /
    • 2009
  • We synthesized new electroluminescence materials [(1,10-phenanthroline)(8-hydroxyquinoline)] Zn(phen)q and investigated their electron transport properties. We used Zn(phen)q and $Alq_3$ for the conductive materials and measured their electron transport properties as a function of the organic layer thickness. The difference between Zn(phen)q and $Alq_3$ as electron transporting materials suggests that the electrical properties depends on the carrier injection.

무기 전자 수송층으로 TiO2 나노입자를 사용한 다양한 양자점 전계발광 소자의 특성 비교 연구 (A Comparison Study on Various Quantum Dots Light Emitting Diodes Using TiO2 Nanoparticles as Inorganic Electron Transport Layer)

  • 김문본;윤창기;김지완
    • 마이크로전자및패키징학회지
    • /
    • 제26권3호
    • /
    • pp.71-74
    • /
    • 2019
  • 본 연구는 발광층으로의 전자 주입을 억제하기 위해 ZnO 나노입자보다 낮은 전자 이동도를 갖는 $TiO_2$ 나노입자를 무기 전자 수송층으로 사용하여 standard와 inverted 두 가지 구조의 양자점 전계발광 소자를 제작하고 그 특성을 비교하였다. Standard 구조의 소자에서는 전류 밀도가 낮은 것에 비해 inverted 구조의 소자에서는 전류 밀도가 매우 높은 것을 확인하였다. 휘도의 경우 inverted 구조의 소자가 standard 구조의 소자보다 더 높았지만 높은 전류 밀도로 인해 낮은 전류 효율을 나타냈다. 또한 전류 밀도가 높은 만큼 구동 전압이 높았으며, 방출 파장 스펙트럼에서 적색 편이를 확인하였다. Standard 구조의 소자에서 나타난 낮은 전류 밀도를 통해, $TiO_2$ 나노입자가 양자점 전계발광 소자에서 전자 주입을 억제할 수 있는 가능성을 확인하였다.