• Title/Summary/Keyword: Electron range

Search Result 1,836, Processing Time 0.027 seconds

Basic study on the gas discharge panel for LCD and PDP (PDP와 LCD에서의 가스방전 페널에 대한 기초연구)

  • Song, Byoung-Doo;Ha, Sung-Chul;Jeon, Byung-Hoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.554-557
    • /
    • 2003
  • This paper describes the information for quantitative simulation of weakly ionized plasma. We should grasp the meaning of the plasma state condition to utilize engineering application and to understand materials of plasma state. In this paper, electron swarm parameter in He+Xe and Ar+He mixture gas calculated for range E/N values $0.01{\sim}500$ [Td] at the temperature is 300 [K] and pressure is 1 [Torr], using a set of electron collision cross sections determined by the authors, and using a method of Backward Prolongation by two term approximation Boltzmann equation method, for basic study on the gas discharge panel.

  • PDF

Inverted structure perovskite solar cells: A theoretical study

  • Sahu, Anurag;Dixit, Ambesh
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1583-1591
    • /
    • 2018
  • We analysed perovskite $CH_3NH_3PbI_{3-x}Cl_x$ inverted planer structure solar cell with nickel oxide (NiO) and spiroMeOTAD as hole conductors. This structure is free from electron transport layer. The thickness is optimized for NiO and spiro-MeOTAD hole conducting materials and the devices do not exhibit any significant variation for both hole transport materials. The back metal contact work function is varied for NiO hole conductor and observed that Ni and Co metals may be suitable back contacts for efficient carrier dynamics. The solar photovoltaic response showed a linear decrease in efficiency with increasing temperature. The electron affinity and band gap of transparent conducting oxide and NiO layers are varied to understand their impact on conduction and valence band offsets. A range of suitable band gap and electron affinity values are found essential for efficient device performance.

Comparative study on the specimen thickness measurement using EELS and CBED methods

  • Yoon-Uk Heo
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.8.1-8.7
    • /
    • 2020
  • Two thickness measurement methods using an electron energy loss spectroscopy (EELS) and 10a convergent beam electron diffraction (CBED) were compared in an Fe-18Mn-0.7C alloy. The thin foil specimen was firstly tilted to satisfy 10a two-beam condition. Low loss spectra of EELS and CBED patterns were acquired in scanning transmission electron microscopy (STEM) and TEM-CBED modes under the two-beam condition. The log-ratio method was used for measuring the thin foil thickness. Kossel-Möllenstedt (K-M) fringe of the $13{\ba{1}}$ diffracted disk of austenite was analyzed to evaluate the thickness. The results prove the good coherency between both methods in the thickness range of 72 ~ 113 nm with a difference of less than 5%.

Structural characterization and degradation efficiency of degradation products of iopromide by electron beam irradiation (전자선 처리 후 생성된 Iopromide의 분해산물 구조 규명 및 분해 효율)

  • Ham, Hyun-Sun;Myung, Seung-Woon
    • Analytical Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.292-299
    • /
    • 2014
  • Iopromide is an X-ray contrast agent that has been detected frequently with high concentration level in surface waters. Structural characterization of degradation products and measurement of degradation efficiency of iopromide by an electron beam irradiation were performed. For the fortified sample with iopromide, electron beam irradiation (UELV-10-10S, klysotrn, 10 MeV, 1 mA and 10 kW) was performed. The chemical structures of I_D_665 and I_D_663, which are degradation products of iopromide, were proposed by interpretation of mass spectra and chromatograms by LC/ESI-MS/MS. The mass fragmentation pathways of mass spectra in tandem mass spectrometry were also proposed. Iopromide was degraded 30.5~98.4% at dose of 0.3~5 kGy, and 97.8~30% in the concentration range $0.5{\sim}100{\mu}g/kg$ at electron beam dose of 0.3 kGy, respectively. Thus, increased degradation efficiency of iopromide by electron beam irradiation was observed with a higher dose of electron beam and lower concentration.

Effects of Light and Photosynthetic Electron Transport System on the Generation of Singlet Oxygen ($^1$O$_2$) in Ginseng Thylakoid Membrane (인삼 틸라코이드에서 Singlet Oxygen($^1$O$_2$) 생성에 미치는 전자전달계의 영향)

  • Yang, Deok-Cho;Chae, Quae;Lee, Sung-Jong;Kim, Yong-Hae;Kang, Young-Hee
    • Journal of Ginseng Research
    • /
    • v.14 no.1
    • /
    • pp.57-62
    • /
    • 1990
  • In order to Investigate the mechanism of the leaf-burning disease of ginseng (Panax ginseng C.A. Meyer), studies on the generation of singlet oxygen (1O2) and the photooxidation of the pigments were carried out in comparison with the ones of soybean (G1ycine max L). The studies were mainly focalized on the effects of light intensity, light intensity, inhibitor and electron donor/acceptor of the Photosynthetic electron transport system. When we measured the amounts of 1O2 generated in the thylakoids of ginseng and soybean by the irradiation of light (300 w/m2) as a function its time. It was identified that a higher amount of 1O2 was formed in the ginseng thylakoid than the case of soybean. A generation ratio of lO2 between ginseng and soybean sltbstantially identical in the range of light intensities 50∼150w/m2 However much higher amount of 1O2 was generated in ginseng by irradiation of strong intensity of light (200 500w/m2). Wave length dependency on the generation of 1O2 and the pigment photooxidation was observed on ginseng thylakoids; red light (600-700 nm) gave a maximum effect in the contrast with blur green light (400-60 nm). When the ginseng thylalioid was treated with the electron donor (Mn2+) and acceptors (DCPIP, FeCy) of the photosynthetic electron transport system. a drastic inhibition of 1O2 generation was observed. However, treatment with its inhibitors (DCMU, KCW) activated 1O2 generation. An interesting fact that an electron donor or acceptor of the photosystem II(P680) Inhibited 1O2 generation, suggests an intimate relationship between 1O2 generation and photosystem II.

  • PDF

Determination of Reorganization Energy from the Temperature Dependence of Electron Transfer Rate Constant for Hydroquinone-tethered Self-assembled Monolayers (SAMs)

  • Park, Won-choul;Hong, Hun-Gi
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.3
    • /
    • pp.381-385
    • /
    • 2006
  • The temperature dependence on the electron transfer rate constant $(k_{app})$ for hydroquinone redox center in $H_2Q(CH_2)_n$SH-SAMs (n = 1, 4, 6, 8, 10, and 12) on gold electrode was investigated to obtain reorganization energy $(\lambda)$ using Laviron’s formalism and Arrhenius plot of ln $[k_{app}/T^{1/2}]$ vs. T^{-1} based on the Marcus densityof-states model. All the symmetry factors measured for the SAMs were relatively close to unity and rarely varied to temperature change as expected. The electron tunneling constant $(\beta)$ determined from the dependence of the $k_{app}$ on the distance between the redox center and the electrode surface gives almost the same $\beta$ values which are quite insensitive to temperature change. Good linear relationship of Arrhenius plot for all $H_2Q(CH_2)_n$SH-SAMs on gold electrode was obtained in the temperature range from 273 to 328 K. The slopes n Arrhenius plot deduced that $\lambda$ of hydroquinone moiety is ca. 1.3-1.4 eV irrespectively of alkyl chain length of the electroactive SAM.

The Proton Contamination Problem of RBSPICE's electron data during March 1, 2013 storm event

  • Kim, Hang-Pyo;Hwang, Junga;Choi, Eunjin;Park, Jong-Seon;Park, Young-Deuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.95.1-95.1
    • /
    • 2013
  • The RBSPICE (Radiation Belt Storm Probes Ion Composition Experiment) is one of five instrument suites onboard the twin Van Allan Probes (or Radiation Belt Storm Probes; RBSP), launched August 30, 2012 by NASA. One of science targets of RBSPICE instrument is to determine "how changes in that ring current affect the creation, acceleration, and loss of radiation belt particles?". For that purpose, it measures ions and electrons simultaneously. Ion's energy range is from ~20 keV to ~1 MeV and electron's energy channel is from ~35 keV to 1 MeV in order to provide supplementary information about the radiation belts. In this paper, we investigate a reliability of the electron flux measured from the RBSPICE by comparing with ECT (The Energetic Particle, Composition and Thermal Plasma Suite) data. We found there is a critical proton contamination problem in the electron channels of ~ 1MeV of RBSPICE observations during one moderate storm event of Sym H ~ -76 nT on March 1, 2013.

  • PDF

Status and Prospect of Free Electron Lasers (자유전자레이저의 개발현황과 전망)

  • Lee, Byung-Cheol;Jeong, Young-Ug;Park, Seong-Hee;Hahn, Sang-June
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.5
    • /
    • pp.435-450
    • /
    • 2006
  • Free electron lasers (FELs) are promising sources of coherent radiation that can provide users with radiations having a wide-range frequency-tunability and good spectral characteristics for basic science and industrial applications. Especially in Terahertz or X-ray ranges of spectrum, FELs can generate much stronger radiations than conventional light sources. In this paper, we introduce the working principles and key technologies of FELs, the status and the prospects of FEL developments.

Regulation Mechanism of Redox Reaction in Rubredoxin

  • Tongpil Min;Marly K. Eidsness;Toshiko Ichiye;Kang, Chul-Hee
    • Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.149-153
    • /
    • 2001
  • The electron transfer reaction is one of the most essential processes of life. Not only does it provide the means of transforming solar and chemical energy into a utilizable form for all living organisms, it also extends into a range of metabolic processes that support the life of a cell. Thus, it is of great interest to understand the physical basis of the rates and reduction potentials of these reactions. To identify the major determinants of reduction potentials in redox proteins, we have chosen the simplest electron transfer protein, rubredoxin, a small (52-54 residue) iron-sulfur protein family, widely distributed in bacteria and archaea. Rubredoxins can be grouped into two classes based on the correlation of their reduction potentials with the identity of residue 44; those with Ala44 (ex: Pyrococcus furiosus) have reduction potentials that are ∼50 mV higher than those with Va144 (ex: Clostridium pasteurianum). Based on the crystal structures of rubredoxins from C. pasteurianum and P. furiosus, we propose the identity of residue 44 alone determines the reduction potential by the orientation of the electric dipole moment of the peptide bond between 43 and 44. Based on 1.5 $\AA$ resolution crystal structures and molecular dynamics simulations of oxidized and reduced rubredoxins from C. pasteurianum, the structural rearrangements upon reduction suggest specific mechanisms by which electron transfer reactions of rubredoxin should be facilitated.

  • PDF

Drift Velocities for Electrons in $SF_6$-Ar Mixtures Gas ($SF_6-Ar$-혼합기체(混合氣體)의 전자(電子) 이동속도(移動速度))

  • Kim, Sang-Nam;Ha, Sung-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1102-1105
    • /
    • 2003
  • Energy distribution function for electrons in $SF_6$-Ar mixtures gas used by MCS-BEq algorithm has been analysed over the E/N range $30{\sim}300[Td]$ by a two term Boltzmann equation and by a Monte Carlo Simulation using a set of electron cross sections determined by other authors, experimentally the electron swarm parameters for 0.2(%) and 0.5(%) $SF_6$-Ar mixtures were measured by time-of-flight(TOF) method, The results show that the deduced electron drift velocities, Electrons Drift Velocities for a rang of E/N values. As a consequence, it was known that the spatial growth rates and the dielectric behaviors in $SF_6$-Ar mixtures are strongly dependent on the addition rate of $SF_6$ gas but the transport coefficients of electrons are insensitive to the addition rate of $SF_6$ gas. The results obtained from Boltzmann equation method and Monte Carlo simulation have been compared with present and previously obtained data and respective set of electron collision cross sections of the molecules.

  • PDF