Browse > Article
http://dx.doi.org/10.5012/bkcs.2006.27.3.381

Determination of Reorganization Energy from the Temperature Dependence of Electron Transfer Rate Constant for Hydroquinone-tethered Self-assembled Monolayers (SAMs)  

Park, Won-choul (ACEN Co., LTD #108A TB1 Center, Hankuk University of Foreign Studies)
Hong, Hun-Gi (Department of Chemistry Education, Seoul National University)
Publication Information
Abstract
The temperature dependence on the electron transfer rate constant $(k_{app})$ for hydroquinone redox center in $H_2Q(CH_2)_n$SH-SAMs (n = 1, 4, 6, 8, 10, and 12) on gold electrode was investigated to obtain reorganization energy $(\lambda)$ using Laviron’s formalism and Arrhenius plot of ln $[k_{app}/T^{1/2}]$ vs. T^{-1} based on the Marcus densityof-states model. All the symmetry factors measured for the SAMs were relatively close to unity and rarely varied to temperature change as expected. The electron tunneling constant $(\beta)$ determined from the dependence of the $k_{app}$ on the distance between the redox center and the electrode surface gives almost the same $\beta$ values which are quite insensitive to temperature change. Good linear relationship of Arrhenius plot for all $H_2Q(CH_2)_n$SH-SAMs on gold electrode was obtained in the temperature range from 273 to 328 K. The slopes n Arrhenius plot deduced that $\lambda$ of hydroquinone moiety is ca. 1.3-1.4 eV irrespectively of alkyl chain length of the electroactive SAM.
Keywords
oquinone-tethered SAM; Reorganization energy; Temperature dependence; Rate constant; Heterogeneous electron transfer;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 5  (Related Records In Web of Science)
Times Cited By SCOPUS : 7
연도 인용수 순위
1 Bard, A. J.; Faulkner, L. R. Electrochemical Methods; Wiley: New York, 1980
2 Curtiss, L. A.; Halley, J. W.; Hautman, J.; Hung, N. C.; Nagy, Z.; Rhee, Y. J.; Yonco, R. M. J. Electrochem. Soc. 1991, 138, 2032   DOI
3 Chidsey, C. E. D. Science 1991, 51, 919
4 Sutin, N. Acc. Chem. Res. 1982, 15, 275   DOI
5 McLendon, G. Acc. Chem. Res. 1988, 21, 160   DOI
6 Murray, R. W. Molecular Design of Electrode Surface; Techniques of Chemistry Series; John Wiley & Sons, Inc.: New York, 1992; Vol. XXII
7 Hong, H.-G.; Park, W. Langmuir 2001, 17, 2483
8 Hong, H.-G.; Park, W. Bull. Korean Chem. Soc. 2005, 26, 1885   DOI   ScienceOn
9 Foster, R. J.; Faulkner, L. R. J. Am. Chem. Soc. 1994, 116, 5453   DOI   ScienceOn
10 Ulman, A. An Introduction to Ultrathin Organic Films: From Langmuir-Blodgett to Self-Assembly; Academic Press: San Diego, CA, 1991
11 Lide, D. R. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, 1990
12 Finklea, H. O. In Electroanalytical Chemistry; Bard, A. J., Rubinstein, I., Eds.; Marcel Dekker: New York, 1996; Vol 19, p109
13 Tender, L.; Carter, M. T.; Murray, R. W. Anal. Chem. 1994, 66, 3173   DOI   ScienceOn
14 Smalley, J. F.; Feldberg, S. W.; Chidsey, C. E. D.; Linford, M. R.; Newton, M. D.; Liu, Y.-P. J. Phys. Chem. 1995, 99, 13141   DOI   ScienceOn
15 Marcus, R. A. J. Phys. Chem. 1963, 67, 853   DOI
16 Rowe, G. K.; Carter, M. T.; Richardson, J. N.; Murray, R. W. Langmuir 1995, 11, 1797   DOI   ScienceOn
17 Finklea, H. O.; Hanshew, D. D. J. Am. Chem. Soc. 1992, 114, 3173   DOI
18 Marcus, R. A. J. Chem. Phys. 1965, 43, 679   DOI
19 Weber, K. S.; Creager, S. E. J. Electroanal. Chem. 1998, 458, 17   DOI   ScienceOn
20 Curtin, L. S.; Peck, S. R.; Tender, L. M.; Murray, R. W.; Rowe, G. K.; Creager, S. E. Anal. Chem. 1993, 65, 386   DOI
21 Marcus, R. A. J. Chem. Phys. 1965, 43, 679   DOI
22 Marcus, R. A.; Sutin, N. Biochim. Biophys. Acta 1985, 811, 265   DOI   ScienceOn
23 Hong, H.-G.; Park, W.; Yu, E. Bull. Korean Chem. Soc. 2000, 21, 23
24 Gobi, K. V.; Okajima, T.; Tokuda, K.; Ohsaka, T. Langmuir 1998, 14, 1108   DOI   ScienceOn
25 Laviron, E. J. Electroanal. Chem. 1979, 101, 19   DOI   ScienceOn