• Title/Summary/Keyword: Electron density

Search Result 2,363, Processing Time 0.033 seconds

Xe Plasma Property with Flat Lamp by Langmuir Probe (단일탐침법을 사용한 평판형 광원의 제논 (Xe) 플라즈마 특성 연구)

  • Pack Gwang-Hyeon;Lee Jong-Chan;Hwang Myung-Keun;Choi Yong-Sung;Park Dae-Hee
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.1
    • /
    • pp.50-54
    • /
    • 2006
  • The study on discharge of the flat lamp lighting source has been requested increasingly. To improve the brightness, life time and efficiency of flat lamp, the plasma diagnosis of flat lamp lighting source is very important. When a distance of discharge electrode is 5.5mm and width is 16.5mm, we measured electron temperature and electron density with single Langmuir probe in flat lamp. Pressure conditions to test the plasma discharge from 100 Torr to 300 Torr. The power supply was PDS-4000 with frequency 20kHz and duty ratio $20\%.$ Form these experimental results, electron temperature was decreased according to increase the gas pressure and the voltage while electron density was increased.

A Study on Emission Characteristics of Ne Gas Using a Single Langmuir Probe Method in Radio-Frequency Inductively Coupled Plasma (13.56MHz ICP에서 단일 탐침법에 의한 Ne 가스의 발광특성 연구)

  • Jo, Ju-Ung;Choi, Yong-Sung;Kim, Yong-Kab;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.150-152
    • /
    • 2004
  • In recent, there have been several developments in lamp technology that promise savings in electrical power consumption and improved quality of the lighting space. The electrodeless fluorescent lamp is intended as a high efficacy replacement for the incandescent reflector lamp in many applications. In this paper, electron temperature and electron density were measured in a radio-frequency inductively coupled plasma using a Langmuir probe method for emission characteristics. Measurement was conducted in an Ne discharge for pressure from 10 [mTorr] and input RF power 100 [W] to 150 [W]. As for the electron density, a electron temperature was more distinguished for a emission characteristic. The results of ideal may contribute to systematic understanding of a electrodeless fluorescent lamps of emission characteristics.

  • PDF

A Study on Emission Characteristics of Ar, Ne Gas Using a Single Langmuir Probe Method in Radio-Frequency Inductively Coupled Plasma (13.56MHz ICP에서 단일 탐침법에 의한 Ar, Ne 가스의 발광특성 연구)

  • Jo, Ju-Ung;Choi, Yong-Sung;Kim, Yong-Kab;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.167-170
    • /
    • 2004
  • In recent, there have been several developments in lamp technology that promise savings in electrical power consumption and improved quality of the lighting space. The electrodeless fluorescent lamp is intended as a high efficacy replacement for the incandescent reflector lamp in many applications. In this paper, electron temperature and electron density were measured in a radio-frequency inductively coupled plasma using a Langmuir probe method for emission characteristics. Measurement was conducted in an Argon, Ne discharge for pressure from 1 [mTorr] and input RF power 10 [W] to 150 [W]. As for the electron density, a electron temperature was more distinguished for a emission characteristic. The results of ideal may contribute to systematic understanding of a electrodeless fluorescent lamps of emission characteristics.

  • PDF

Spatial Distribution of Electron Number Density in an Inductively Coupled Plasma (유도결합 플라스마 공간내의 전자밀도 분포)

  • Beom Suk Choi
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.327-332
    • /
    • 1986
  • Spatial (radial and height) distribution of electron number density is measured for an inductively coupled plasma under five operating conditions: (1) no carrier gas, (2) carrier gas without aerosel, (3) carrier gas with aerosol, (4) carrier gas with desolvated aerosol, and (5) carrier gas with aerosol and excess lithium. A complete RF power mapping of electron density is obtained. The plasma electrons for a typical analytical torch are observed to be hollow at the radial center in the region close to the induction coil, but diffuse rapidly toward the center in the higher region of the plasma. The presence of excess Li makes no significant change in the electron density profiles. The increases in the RF power levels increase the values of electron density uniformly across the radial coordinate.

  • PDF

The Effect of Density Gradient on the Self-modulated Laser Wakefield Acceleration with Relativistic and Kinetic Effects

  • Yoo, Seung-Hoon;Kim, Jae-Hoon;Kim, Jong-Uk;Seo, Ju-Tae;Hahn, Sang-June
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.42-47
    • /
    • 2009
  • The propagation of an intense laser pulse through an upward density-gradient plasma in a self-modulated laser wakefield acceleration (SM-LWFA) is investigated by using particle-in-cell (PIC) simulations. In the fully relativistic and kinetic PIC simulations, the relativistic and kinetic effects including Landau damping enhance the electron dephasing. This electron dephasing is the most important factor for limiting the energy of accelerated electrons. However, the electron dephasing, which is enhanced by relativistic and kinetic effects in the homogeneous plasma, can be forestalled through the detuning process arising from the longitudinal density gradient. Simulation results show that the detuning process can effectively maintain the coherence of the laser wake wave in the spatiotemporal wakefield pattern, hence considerable energy enhancement is achievable. The spatiotemporal profiles are analyzed for the detailed study on the relativistic and kinetic effects. In this paper, the optimum slope of the density gradient for increasing electron energy is presented for various laser intensities.

A Study on the Effects of Hot Phonon in Electron Transport at Millimeter-wave Frequencies (밀리미터 주파수에서 전자의 운동에 대한 Hot Phonon의 영향 연구)

  • 윤태섭
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.12
    • /
    • pp.1070-1078
    • /
    • 1998
  • A density of phonon is increased by application of electric field. At this time the phonon which has higher energy than around is called hot phonon is disappeared after 7 picosecond by scattering with electron and loss energy. Since the lifetime of phonon is very short, the effects of hot phonon can be neglected in the low speed semiconductor device, but it must be considered in high speed devices. DC and AC electric fields are applied to bulk GaAs, and the density of phonon is obtained and analyzed for its effects on electron velocity and electron distribution using Monte Carlo simulation method. Under high electric filed the density of hot phonon increased and energy of hot phonon is decreased by scattering with electron on the other hand the energy of electron is increased. Therefore electron move from central valley of conduntion band to satellite vallies and the valocity of electron decrease since the mass of electron in satellite vally is heavier than central vally. In millimeter wave frequencies, the effects of hot phonon increased at higher frequencies.

  • PDF

UNCERTAINTIES INVOLVED IN THE IONOSPHERIC CONDUCTIVITY ESTIMATION (전리층 전기전도도의 추정과 관련된 불확실성)

  • 곽영실;안병호
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.4
    • /
    • pp.243-254
    • /
    • 2002
  • Various uncertainties involved in ionospheric conductivity estimation utilizing the electron density profile obtained from the Sondrestrom incoherent scatter radar are examined. First, we compare the conductivity which is based on raw electron density and the one based on corrected electron density that takes into account the effects of the difference between the electron and ion temperatures and the Debye length. The corrected electron density yields higher Pedersen and Hall conductivities than the raw electron density does. Second, the dependence of collision frequency model on the conductivity estimation is examined. Below 110 km conductivity does not depend significantly on collision frequency models. Above 110 km, however, the collision models affect the conductivity estimation. Third, the influence of the electron and ion temperatures on the conductivity estimation is examined. Electron and ion temperatures carrying an error of about 10% do not seem to affect significantly the conductivity estimation. Fourth, also examined is the effect of the choice of the altitude range of integration in calculating the height-integrated conductivity, conductance. It has been demonstrated that the lower and upper boundaries of the integration are quite sensitive to the estimation of the Hall and Pedersen conductances, respectively.

Measurement of Electron Density and Electron-neutral Collision Frequency Using Cutoff Probe Based on the Plasma Reactance Measurement

  • Yu, Gwang-Ho;Kim, Dae-Ung;Na, Byeong-Geun;Seo, Byeong-Hun;Yu, Sin-Jae;Kim, Jeong-Hyeong;Seong, Dae-Jin;Sin, Yong-Hyeon;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.184-184
    • /
    • 2012
  • We proposed a new measurement method of cutoff probe using the reactance spectrum of the plasma in cutoff probe system instead of transmission spectrum. The high accurate reactance spectrum of the plasma which is expected in previous circuit simulation of cutoff probe [1] was measured by using the automatic port extension method of the network analyzer. The measured reactance spectrum is good agreement with E/M wave simulation result (CST Microwave Studio). From the analysis of the measured reactance spectrum based on the circuit modeling, not only the electron density but also electron-neutral collision frequency can be simply obtained. The obtained results of electron density and e-n collision frequency were presented and discussed in wide range of experimental conditions, together with comparison result with previous methods (a previous cutoff probe using transmission spectrum and a single langmuir probe).

  • PDF

Quantitative Evaluation of Dislocation Density in Epitaxial GaAs Layer on Si Using Transmission Electron Microscopy

  • Kim, Kangsik;Lee, Jongyoung;Kim, Hyojin;Lee, Zonghoon
    • Applied Microscopy
    • /
    • v.44 no.2
    • /
    • pp.74-78
    • /
    • 2014
  • Dislocation density and distribution in epitaxial GaAs layer on Si are evaluated quantitatively and effectively using image processing of transmission electron microscopy image. In order to evaluate dislocation density and distribution, three methods are introduced based on line-intercept, line-length measurement and our coding with line-scanning method. Our coding method based on line-scanning is used to detect the dislocations line-by-line effectively by sweeping a thin line with the width of one pixel. The proposed method has advances in the evaluation of dislocation density and distribution. Dislocations can be detected automatically and continuously by a sweeping line in the code. Variation of dislocation density in epitaxial GaAs films can be precisely analyzed along the growth direction on the film.