• Title/Summary/Keyword: Electron Transport Rate

검색결과 127건 처리시간 0.025초

Serum Deprivation Enhances Apoptotic Cell Death by Increasing Mitochondrial Enzyme Activity

  • Moon, Eun-Yi
    • Biomolecules & Therapeutics
    • /
    • 제16권1호
    • /
    • pp.1-8
    • /
    • 2008
  • Mitochondria are important sensor of apoptosis. $H_2O_2-induced$ cell death rate was enhanced by serum deprivation. In this study, we investigated whether serum deprivation using 0.5 or 3 % FBS induces apoptotic cell death through mitochondrial enzyme activation as compared to 10 % FBS. Apoptotic cell death was observed by chromosome condensation and the increase of sub-G0/G1 population. Serum deprivation reduced cell growth rate, which was confirmed by the decrease of S-phase population in cell cycle. Serum deprivation significantly increased caspase-9 activity and cytochrome c release from mitochondria into cytosol. Serum deprivation-induced mitochondrial changes were also indicated by the increase of ROS production and the activation of mitochondrial enzyme, succinate dehydrogenase. Mitochondrial enzyme activity increased by serum deprivation was reduced by the treatment with rotenone, mitochondrial electron transport inhibitor. In conclusion, serum deprivation induced mitochondrial apoptotic cell death through the elevation of mitochondrial changes such as ROS production, cytochrome c release and caspase-9 activation. It suggests that drug sensitivity could be enhanced by the increase of mitochondrial enzyme activity in serum-deprived condition.

순환전류법을 이용해 ZnO 금속산화물과 Graphene을 동시에 제막한 전자수송층을 갖는 유기태양전지의 특성 (Characteristics of Organic Solar Cell having an Electron Transport Layer co-Deposited with ZnO Metal Oxide and Graphene using the Cyclic Voltammetry Method)

  • 안준섭;한은미
    • 마이크로전자및패키징학회지
    • /
    • 제29권1호
    • /
    • pp.71-75
    • /
    • 2022
  • Graphene oxide를 ZnCl2:NaCl 전해질과 함께 교반한 후 순환 전압전류법에 의해 전기화학적으로 제막하여 유기태양전지용 전자수송층 제막과정을 단순화하고 이를 갖는 유기태양전지를 제작하였다. 소자의 구조는 FTO/ZnO:graphene 전자수송층/P3HT:PCBM 광활성층/PEDOT:PSS 정공수송층/Ag이다. ETL의 형태 및 화학적 특성은 주사전자현미경(scanning electron microscopy, SEM), X선 광전자 분광법(X-ray photoelectron spectroscopy, XPS), 라만 분광법으로 확인하였다. XPS 측정결과 ZnO 금속산화물 및 탄소결합이 동시에 확인되었고, 라만 분광법에서 ZnO와 graphene 피크를 확인하였다. 제작한 태양전지의 전기적 특성을 솔라시뮬레이터로 측정하였고 0.05 V/s의 속도로 2회 제막한 ETL 소자에서 1.94%의 가장 높은 광전변환효율을 나타내었다.

Composition and interface quality control of AlGaN/GaN heterostructure and their 2DEG transport properties

  • Kee, Bong;Kim, H.J.;Na, H.S.;Kwon, S.Y.;Lim, S.K.;Yoon, Eui-Joon
    • Journal of Korean Vacuum Science & Technology
    • /
    • 제4권3호
    • /
    • pp.81-85
    • /
    • 2000
  • The effects of $NH_3$ flow rate and reactor pressure on Al composition and the interface of AlGaN/GaN heterostructure were studied. Equilibrium partial pressure of Ga and Al over AiGaN alloy was calculated as a function of growth pressure, $NH_3$flow rate and temperature. It was found equilbrium vapor pressure of Al is significantly lower than that of Ga, thus, the alloy composition mainly controlled by Ga partial pressure. We believe that more decomposition of Ga occur at lower $NH_3$ flow rate and higher growth pressure leads to preferred Al incorporation into AlGaN. The alloy composition gradient became larger at AlGaN/GaN heterointerface at higher reactor pressures, higher Al composition and low $NH_3$ flow rate. This composition gradient lowered sheet carrier concentration and electron mobility as well. We obtained an AlGaN/GaN heterostructure with sheet carrier density of ${\sim}2{\times}10^{13}cm^{-2}$ and mobility of 1250 and 5000 $cm^2$/Vs at 300 K and 100 K, respectively.

  • PDF

Raman scattering spectroscopy as a characterization method of coated conductors

  • Um, Y.M.;Jo, W.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제9권4호
    • /
    • pp.24-27
    • /
    • 2007
  • The purpose of this work is to develop, integrate, and implement an optical characterization method to evaluate physical properties in coated conductors and investigate the local distribution of the causes of degraded performance. The method that we selected at this moment is Raman scattering spectroscopy, which is accompanied with measurements of local supercurrent transport, phase composition, microstructure, and epitaxy quality for coated conductors that range in size up to multi-meter-length tapes and that embrace the entire tape embodiment (substrate through cap layer). The establishment of Raman spectroscopy as an on-line process monitoring tool is our eventual goal of research, but it requires very robust and cost-effective equipments. We analyzed $YBa_2Cu_3O_7(YBCO)$ thin films grown at various substrate temperatures by using Raman spectroscopy. YBCO films were grown by a high-rate electron-beam co-evaporation method. Raman spectra of YBCO films with lower-transport properties exhibit additional phonon modes at ${\sim}300cm^{-1}$, ${\sim}600cm^{-1}$ and ${\sim}630cm^{-1}$, which are related to second-phases such as $Ba_2Cu_3O_{5.9}$ and $BaCuO_2$. We propose a new method to characterize Raman spectra of coated conductors for an in-line quality control.

LSC/GDC (50 : 50 vol%) 활성층이 LSCF/GDC (20 : 80 vol%) 복합 분리막의 산소투과 거동에 미치는 영향 (The Effect of LSC/GDC (50 : 50 vol%) Active Layers on Oxygen Transport Properties of LSCF/GDC (20 : 80 vol%) Dual-phase Membrane)

  • 차다솜;유충열;주종훈;유지행;한문희;조철희
    • 멤브레인
    • /
    • 제24권5호
    • /
    • pp.367-374
    • /
    • 2014
  • 본 연구에서는 LSCF/GDC (20 : 80 vol%) 복합 분리막 표면에 LSC/GDC (50 : 50 vol%) 활성층을 코팅한 후 활성층의 열처리 온도, 두께, 침투법을 이용한 STF 도입이 산소투과 특성에 미치는 영향을 고찰하였다. 활성층 도입은 복합 분리막의 산소 투과 유속을 급격히 증진시켰으며 이는 활성층 성분인 LSC/GDC (50 : 50 vol%)가 전자 전도성 및 표면 산소 분해 반응을 증진시켰기 때문이었다. 활성층의 열처리 온도가 $900^{\circ}C$에서 $1000^{\circ}C$로 증가한 경우, 산소 투과 유속은 증가하였고 이는 분리막과 활성층 사이 그리고 활성층의 결정입간 접촉이 증진하여 산소이온과 전자 흐름을 증진시켰기 때문으로 설명되었다. 코팅층의 두께가 약 $10{\mu}m$에서 약 $20{\mu}m$로 증가한 경우, 산소 투과 유속은 오히려 감소하였는데 이는 코팅층의 두께가 증가할수록 기공을 통한 공기 중의 산소 유입이 어려워지기 때문으로 설명되었다. 또한, 코팅층에 침투법을 이용하여 STF를 도입한 경우가 STF를 도입하지 않은 경우 보다 높은 산소 투과 유속을 보였는데 이는 도입된 STF가 산소 분해하는 표면 반응 속도를 촉진시키기 때문이다. 본 연구로부터 LSC/GDC (50 : 50 vol%) 활성층 코팅 및 특성 제어는 LSCF/GDC (20 : 80 vol%) 복합 분리막의 산소투과 증진에 매우 중요함을 확인하였다.

Photovoltaic Behavior of Dye-sensitized Long TiO2 Nanotube Arrays

  • Kim, Sang-Mo;Kim, Hark-Jin;Kim, Yong-Joo;Lim, Goo-Il;Choi, Young-Sik;Lee, Wan-In
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권11호
    • /
    • pp.4035-4040
    • /
    • 2011
  • Long $TiO_2$ nanotube (NT) arrays, prepared by electrochemical anodization of Ti foils, have been utilized as dye-adsorbing electrodes in dye-sensitized solar cells (DSCs). By anodizing for 1-24 hr and subsequent annealing, highly crystallized and tightly-adhered NT arrays were tailored to 11-150 ${\mu}m$ lengths, ~90 nm innerpore diameter and ~30 nm wall thickness. I-V curves revealed that the photovoltaic conversion efficiency (${\eta}$) was proportional to the NT length up to 36 ${\mu}m$. Beyond this length, the ) was proportional to the NT length up to ${\eta}$ was still steadily increased, though at a much lower rate. For example, an ${\eta}$ of 5.05% at 36 ${\mu}m$ was increased to 6.18% at 150 ${\mu}m$. Transient photoelectron spectroscopic analyses indicated that NT array-based DSCs revealed considerably higher electron diffusion coefficient ($D_e$) and life time (${\tau}_e$) than those with $TiO_2$ nanoparticles (NP). Moreover, the electron diffusion lengths ($L_e$) of the photo-injected electrons were considerably larger than the corresponding NT lengths in all the cases, suggesting that electron transport in NT arrays is highly efficient, regardless of tube length.

Se, As 및 Te를 이용한 고감도 다층 광도전막의 제작 및 그 응용 (Fabrication of High Sensitive Photoconductive Multilayer Using Se,As and Te and its Application)

  • 박기철;이건일;김기완
    • 대한전자공학회논문지
    • /
    • 제25권4호
    • /
    • pp.422-429
    • /
    • 1988
  • The photoconductive multilayer of Se-As(hole blocking layer)/Se-As-Te (photoconductive layer) /Se-As (layer for supporiting hole transport)/Se-As(layer or controlling total capacitance)/Sb2S3(electron blocking layer) was fabricated and its electrical and optical properties were investigated. The photoconductive multilayer is made of evaporated a-Se as the base material, doped with As and Te to prevent the crystallization of a-Se and to enhance red sensitivity, respectively. The multilayer with good image reproducibility has the following deposition condition. The first layer has the thickness of 250\ulcornerat the deposition rate of 250\ulcornersec. The second layer has the thickness of 800\ulcornerat the deposition rate of 250\ulcornersec. The third layer has the thickness of 125\ulcornerat the deposition rate of 250\ulcornersec. The fourth layer has the thickness of 1700\ulcornerunder the Ar gas ambient of 50x10**-3torr. The image pick-up tube, employing this multilayer demonstrates the following characteristics. The photosensitivity is 0.8, the resolution limit is above 300TV line, and the decay lag is about 7%. And spectral response convers the whole visible range. Therfore the application to color TV camera is expected.

  • PDF

Chlorella 의 물질대사에 미치는 미양원소의 결핍효과 1 (제 1 ) -생 및 광합성 에 관하여- (Effect of micronutritional-element deficienies on the metabolism of Chlorella cells. (I) -On the growth rate, respiation and photosynthesis-)

  • 이영록;진평;심웅섭
    • 미생물학회지
    • /
    • 제5권1호
    • /
    • pp.15-19
    • /
    • 1967
  • Chlorella ellipsoidea cells were cultured in an iron, copper, zinc, manganese, molybdenum or boron-free medium. Physiological activities such as growth rate, reproduction, endogenous and glucose respiration, photosynthetic activity and biosythesis of chlorophyll of the micro-element definition cells were measured. It generally, growth rate, respiratory and photosynthetic activities, and biosynthesis of chlorophyll of the micro-element deficient cells decreased more or less, compared with those of the normal cells. The growth of the algal cells in an iron-free medium were retarded severely with the chlorosis, and the photosynthetic activity of the cells decreased remarkably even though the low content of chlorophyll in the cells owing to the iron-deficiency is considered. Therefore, it is deduced that iron takes part in the photosynthetic process itself, possibly by its participation in the photo phosphorylation coupled with electron transport. Respiratory activity of boron-deficient cells showed the most severe decrease whereas those of the molybdenum-deficient cells showed very slight decrease in spite of severe growth retardation.

  • PDF

NaCl 처리가 고들빼기의 생장과 생리적 특성에 미치는 영향 (Effects of NaCl on the Growth and Physiological Characteristics of Crepidiastrum sonchifolium (Maxim.) Pak & Kawano)

  • 이경철;한상균;윤경규;이학봉;송재모
    • 한국약용작물학회지
    • /
    • 제28권1호
    • /
    • pp.1-8
    • /
    • 2020
  • Background: This study was conducted to investigate the effects of NaCl concentration on the photosynthetic parameters, chlorophyll fluorescence and growth characteristics of Crepidiastrum sonchifolium. Methods and Results: As treatments, we subjected C. sonchifolium plants to four different concentrations of NaCl (0, 50, 100 and 200 mM). We found that the photosynthetic parameters maximum photosynthesis rate (PN max), net apparent quantum yield (Φ), maximum carboxylation rate (Vcmax), and maximum electron transport rate (Jmax) were significantly reduced at an NaCl concentration greater than 100 mM. In contrast, there was an increase in water-use efficiency with increasing NaCl concentration, although in terms of growth performances, leaf dry weight, root dry weight, stem length, and total dry weight all decreased with increasing NaCl concentration. Furthermore, leakage of electrolytes, as a consequence of cell membrane damage, clearly increased in response to an increase in NaCl concentration. Analysis of the polyphasic elevation of chlorophyll a fluorescence transients (OKJIP) revealed marked decrease in flux ratios (ΦPO, ΨO and ΦEO) and the PIabs, performance index in response to treatment with 200 mM NaCl, thereby reflectings the relatively reduced state of photosystem II. This increase in fluorescence could be due to a reduction in electron transport beyond Q-A. We thus found that the photosynthetic parameters, chlorophyll fluorescence and growth characteristics of C. sonchifolium significantly increased in response to treatment with 200 mM NaCl. Conclusions: Collectively, the findings of this study indicate that C. sonchifolium shows relatively low sensitivity to NaCl stress, although photosynthetic activity was markedly reduced in plants exposed to 200 mM NaCl.

대기 중 CO2 상승 조건에서 재배되는 콩의 광합성과 생장 반응의 분석 (Photosynthesis and Growth Responses of Soybean (Glycine max Merr.) under Elevated CO2 Conditions)

  • 오순자;고석찬
    • 한국환경과학회지
    • /
    • 제26권5호
    • /
    • pp.601-608
    • /
    • 2017
  • The effects of elevated atmospheric $CO_2$ on growth and photosynthesis of soybean (Glycine max Merr.) were investigated to predict its productivity under elevated $CO_2$ levels in the future. Soybean grown for 6 weeks showed significant increase in vegetative growth, based on plant height, leaf characteristics (area, length, and width), and the SPAD-502 chlorophyll meter value (SPAD value) under elevated $CO_2$ conditions ($800{\mu}mol/mol$) compared to ambient $CO_2$ conditions ($400{\mu}mol/mol$). Under elevated $CO_2$ conditions, the photosynthetic rate (A) increased although photosystem II (PS II) photochemical activity ($F_v/F_m$) decreased. The maximum photosynthetic rate ($A_{max}$) was higher under elevated $CO_2$ conditions than under ambient $CO_2$ conditions, whereas the maximum electron transport rate ($J_{max}$) was lower under elevated $CO_2$ conditions compared to ambient $CO_2$ conditions. The optimal temperature for photosynthesis shifted significantly by approximately $3^{\circ}C$ under the elevated $CO_2$ conditions. With the increase in temperature, the photosynthetic rate increased below the optimal temperature (approximately $30^{\circ}C$) and decreased above the optimal temperature, whereas the dark respiration rate ($R_d$) increased continuously regardless of the optimal temperature. The difference in photosynthetic rate between ambient and elevated $CO_2$ conditions was greatest near the optimal temperature. These results indicate that future increases in $CO_2$ will increase productivity by increasing the photosynthetic rate, although it may cause damage to the PS II reaction center as suggested by decreases in $F_v/F_m$, in soybean.