Browse > Article

Serum Deprivation Enhances Apoptotic Cell Death by Increasing Mitochondrial Enzyme Activity  

Moon, Eun-Yi (Laboratory of Signal Transduction and Disease Control, Department of Bioscience and Biotechnology, Sejong University)
Publication Information
Biomolecules & Therapeutics / v.16, no.1, 2008 , pp. 1-8 More about this Journal
Mitochondria are important sensor of apoptosis. $H_2O_2-induced$ cell death rate was enhanced by serum deprivation. In this study, we investigated whether serum deprivation using 0.5 or 3 % FBS induces apoptotic cell death through mitochondrial enzyme activation as compared to 10 % FBS. Apoptotic cell death was observed by chromosome condensation and the increase of sub-G0/G1 population. Serum deprivation reduced cell growth rate, which was confirmed by the decrease of S-phase population in cell cycle. Serum deprivation significantly increased caspase-9 activity and cytochrome c release from mitochondria into cytosol. Serum deprivation-induced mitochondrial changes were also indicated by the increase of ROS production and the activation of mitochondrial enzyme, succinate dehydrogenase. Mitochondrial enzyme activity increased by serum deprivation was reduced by the treatment with rotenone, mitochondrial electron transport inhibitor. In conclusion, serum deprivation induced mitochondrial apoptotic cell death through the elevation of mitochondrial changes such as ROS production, cytochrome c release and caspase-9 activation. It suggests that drug sensitivity could be enhanced by the increase of mitochondrial enzyme activity in serum-deprived condition.
Serum deprivation; Mitochondria; ROS; HeLa cells; Apoptosis;
Citations & Related Records

Times Cited By Web Of Science : 7  (Related Records In Web of Science)
Times Cited By SCOPUS : 6
연도 인용수 순위
1 Bialik, S., Cryns, V. L., Drincic, A., Miyata, S., Wollowick, A. L., Srinivasan, A. and Kitsis, R. N. (1999). The mitochondrial apoptotic pathway is activated by serum and glucose deprivation in cardiac myocytes. Circ. Res. 85, 403-414   DOI   ScienceOn
2 Chance, B., Williams, G.R. and Hollunger, G. (1963). Inhibition of electron and energy transfer in mitochondria. I. Effects of Amytal, thiopental, rotenone, progesterone, and methylene glycol. J Biol. Chem. 238, 418-431
3 Colombaioni, L., Colombini, L. and Garcia-Gil, M. (2002a). Role of mitochondria in serum withdrawal-induced apoptosis of immortalized neuronal precursors. Brain Res. Dev. Brain Res. 134, 93-102   DOI   ScienceOn
4 Colombaioni, L., Frago, L. M., Varela-Nieto, I., Pesi, R. and Garcia-Gil, M. (2002b). Serum deprivation increases ceramide levels and induces apoptosis in undifferentiated HN9.10e cells. Neurochem. Int. 40, 327-336   DOI   ScienceOn
5 Denizot, F. and Lang, R. (1986). Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods 89, 271-277   DOI   ScienceOn
6 Guzy, R. D., Sharma, B., Bell, E., Chandel, N. S. and Schumacker, P. T. (2008). Loss of the SdhB, but Not the SdhA, subunit of complex II triggers reactive oxygen species- dependent hypoxia-inducible factor activation and tumorigenesis. Mol Cell Biol 28, 718-731   DOI   ScienceOn
7 Joza, N., Susin, S. A., Daugas, E., Stanford, W. L., Cho, S. K., Li, C. Y., Sasaki, T., Elia, A. J., Cheng, H. Y., Ravagnan, L., Ferri, K. F., Zamzami, N., Wakeham, A., Hakem, R., Yoshida, H., Kong, Y. Y., Mak, T. W., Zuniga-Pflucker, J. C., Kroemer, G. and Penninger, J. M. (2001). Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410, 549-554   DOI   ScienceOn
8 Kazi, A. and Dou, Q. P. (2005). Cell cycle and drug sensitivity. Methods Mo.l Med. 111, 33-42
9 Le, S. B., Hailer, M. K., Buhrow, S., Wang, Q., Flatten, K., Pediaditakis, P., Bible, K. C., Lewis, L. D., Sausville, E. A., Pang, Y. P., Ames, M. M., Lemasters, J. J., Holmuhamedov, E. L. and Kaufmann, S. H. (2007). Inhibition of mitochondrial respiration as a source of adaphostininduced reactive oxygen species and cytotoxicity. J Biol Chem 282, 8860-8872   DOI   ScienceOn
10 McLennan, H. R. and Degli Esposti, M. (2000). The contribution of mitochondrial respiratory complexes to the production of reactive oxygen species. J Bioenerg Biomembr 32, 153-162   DOI   ScienceOn
11 Minamino, T., Miyauchi, H., Yoshida, T., Ishida, Y., Yoshida, H. and Komuro, I. (2002). Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction. Circulation 105, 1541-1544   DOI   ScienceOn
12 Moon, E. Y., Han, Y. H., Lee, D. S., Han, Y. M. and Yu, D. Y. (2004). Reactive oxygen species induced by the deletion of peroxiredoxin II (PrxII) increases the number of thymocytes resulting in the enlargement of PrxII-null thymus. Eur. J. Immunol. 34, 2119-2128   DOI   ScienceOn
13 Moon, E. Y. and Lerner, A. (2003). PDE4 inhibitors activate a mitochondrial apoptotic pathway in chronic lymphocytic leukemia cells that is regulated by protein phosphatase 2A. Blood 101, 4122-4130   DOI   ScienceOn
14 Ott, M., Gogvadze, V., Orrenius, S. and Zhivotovsky, B. (2007). Mitochondria, oxidative stress and cell death. Apoptosis 12, 913-922   DOI
15 Ricci, J. E., Gottlieb, R. A. and Green, D. R. (2003). Caspase-mediated loss of mitochondrial function and generation of reactive oxygen species during apoptosis. J Cell Biol 160, 65-75   DOI   ScienceOn
16 Roucou, X., Antonsson, B. and Martinou, J. C. (2001). Involvement of mitochondria in apoptosis. Cardiol. Clin. 19, 45-55   DOI
17 Royall, J. A. and Ischiropoulos, H. (1993). Evaluation of 2',7'-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch. Biochem. Biophys. 302, 348-355   DOI   ScienceOn
18 Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Brenner, C., Larochette, N., Prevost, M. C., Alzari, P. M. and Kroemer, G. (1999a). Mitochondrial release of caspase-2 and -9 during the apoptotic process. J. Exp. Med. 189, 381-394   DOI
19 Shin, M. H., Moon, Y. J., Seo, J. E., Lee, Y., Kim, K. H. and Chung, J. H. (2007). Reactive oxygen species produced by NADPH oxidase, xanthine oxidase, and mitochondrial electron transport system mediate heat shockinduced MMP-1 and MMP-9 expression. Free Radic. Biol. Med. (Nov. 12, Epub ahead of print)
20 Slater, T. F., Sawyer, B. and Straeuli, U. (1963). Studies On Succinate-Tetrazolium Reductase Systems. Iii. Points Of Coupling Of Four Different Tetrazolium Salts. Biochim Biophys Acta 77, 383-393   DOI
21 Ishii, N., Ishii, T. and Hartman, P. S. (2007). The role of the electron transport SDHC gene on lifespan and cancer. Mitochondrion 7, 24-28   DOI   ScienceOn
22 Voccoli, V., Mazzoni, F., Garcia-Gil, M. and Colombaioni, L. (2007). Serum-withdrawal-dependent apoptosis of hippocampal neuroblasts involves Ca++ release by endoplasmic reticulum and caspase-12 activation. Brain Res. 1147, 1-11   DOI   ScienceOn
23 Wang, J., Li, L.,Cang, H., Shi, G. and Yi, J. (2007a). NADPH oxidase-derived reactive oxygen species are responsible for the high susceptibility to arsenic cytotoxicity in acute promyelocytic leukemia cells. Leuk. Res. (Sep. 3, Epub ahead of print)
24 Wang, W., Liu, X., Zhang, Y., Zhao, J., Zhao, B., Zhang, S. and Miao, J. (2007b). Both Senescence and Apoptosis Induced by Deprivation of Growth Factors Were Inhibited by a Novel Butyrolactone Derivative through Depressing Integrin beta4 in Vascular Endothelial Cells. Endothelium 14, 325-332   DOI   ScienceOn
25 Nelyudova, A., Aksenov, N., Pospelov, V. and Pospelova, T. (2007). By blocking apoptosis, Bcl-2 in p38-dependent manner promotes cell cycle arrest and accelerated senescence after DNA damage and serum withdrawal. Cell Cycle 6, 2171-2177
26 Xu, R., Chen, J., Cong, X., Hu, S. and Chen, X. (2008). Lovastatin protects mesenchymal stem cells against hypoxia- and serum deprivation-induced apoptosis by activation of PI3K/Akt and ERK1/2. J. Cell Biochem. 103, 256-269   DOI   ScienceOn
27 Zhang, X. J., Yan, J., Cuttle, L., Endre, Z. and Gobe, G. (2000). Escape from apoptosis after prolonged serum deprivation is associated with the regulation of the mitochondrial death pathway by Bcl-x(l). Biochem. Biophys. Res. Commun. 277, 487-493   DOI   ScienceOn
28 Zhu, W., Chen, J., Cong, X., Hu, S. and Chen, X. (2006). Hypoxia and serum deprivation-induced apoptosis in mesenchymal stem cells. Stem Cells 24, 416-425   DOI   ScienceOn
29 Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Snow, B. E., Brothers, G. M., Mangion, J., Jacotot, E., Costantini, P., Loeffler, M., Larochette, N., Goodlett, D. R., Aebersold, R., Siderovski, D. P., Penninger, J. M. and Kroemer, G. (1999b). Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441-446   DOI   ScienceOn