Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.5.367

The Effect of LSC/GDC (50 : 50 vol%) Active Layers on Oxygen Transport Properties of LSCF/GDC (20 : 80 vol%) Dual-phase Membrane  

Cha, Da-Som (Graduate School of Energy Science and Technology, Chungnam National University)
Yoo, Chung-Yul (Advanced Materials & Devices Laboratory, Korea Institute of Energy Research)
Joo, Jong Hoon (Advanced Materials & Devices Laboratory, Korea Institute of Energy Research)
Yu, Ji Haeng (Advanced Materials & Devices Laboratory, Korea Institute of Energy Research)
Han, Moon-Hee (Graduate School of Energy Science and Technology, Chungnam National University)
Cho, Churl-Hee (Graduate School of Energy Science and Technology, Chungnam National University)
Publication Information
Membrane Journal / v.24, no.5, 2014 , pp. 367-374 More about this Journal
Abstract
In the present study, disc-type LSCF/GDC (20 : 80 vol%) dual-phase membranes having porous LSC/GDC (50 : 50 vol%) active layers were prepared and effect of active layers on oxygen ion transport behavior was investigated. Introduction of active layers improved drastically oxygen flux due to enhanced electron conductivity and oxygen surface exchange activity. As firing temperature of active layer increased from $900^{\circ}C$ to $1000^{\circ}C$, oxygen flux increased due to improved contact between membrane and active layer or between grains of active layer. The enhanced contact would improve oxygen ion and electron transports from active layer to membrane. Also, as thickness of active layer increased from 10 to $20{\mu}m$, oxygen flux decreased since thick active layer rather prevented oxygen molecules diffusing through the pores. And, STF infiltration improved oxygen flux due to enhanced oxygen reduction reaction rate. The experimental data announces that coating and property control of active layer is an effective method to improve oxygen flux of dual-phase oxygen transport membrane.
Keywords
oxygen transport membrane; LSCF/GDC dual-phase membrane; LSC/GDC active layer; STF infiltration;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. McIntosh, J. F. V. Vente, W. G. Haije, D. H. A. Blank, and H. J. M. Bouwmeester, "Oxygen Stoichiometry and Chemical Expansion of $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ Measured by in Situ Neutron Diffraction", Chem. Mater., 18, 2187 (2006).   DOI   ScienceOn
2 J. H. Joo, K. S. Yun, Y. Lee, J. Joug, C. Y. Yoo, and J. H. Yu, "Dramatically Enhanced Oxygen Fluxes in Fluorite-Rich Dual-phase Membrane by Surface Modification", Chem. Mater., 264, 387 (2014).
3 H. Kruidhof, H. J. M. Bouwmeester, R. H. E. Doorn, and A. J. Burggraaf, "Influence of order-disorder transitions on oxygen permeability through selected nonstoichiometric perovskite-type oxides", Solid State Ion., 63-65, 816 (1993).   DOI   ScienceOn
4 S. J. Lee, S. I. Jeon, and J. H. Park, "Fabrication and stability of Pd coated Ta/YSZ cermet membrane for hydrogen separation", Membrane Journal, 20, 69 (2010).
5 M. J. Shin and J. H. Yu, "Oxygen transport of A-site deficient $Sr_{1-x}Fe_{0.5}Co_{0.5}O_{3-{\delta}}$ (x = 0-0.3) membranes", J. Membr. Sci., 401-402, 40 (2012).   DOI   ScienceOn
6 J. H. Joo, J. Jeong, S. Y. Kim, C. Y. Yoo, D. W. Jung, H. J. Park, C. Kwak, and J. H. Yu, "Mosaic-shaped cathode for highly durable solid oxide fuel cell under thermal stress", J. Power Sour., 247, 534 (2014).   DOI   ScienceOn
7 B. C. Steele, "Ceramic ion conducting membranes", Solid State Mater. Sci., 1, 864 (1996).   DOI   ScienceOn
8 M. Arnold, H. Wang, and A. Feldhoff, "Influence of $CO_2$ on the oxygen permeation performance and the microstructure of perovskite-type $(Ba_{0.5}Sr_{0.5})(Co_{0.8}Fe_{0.2})O_{3-{\delta}}$ membranes", J. Membr. Sci., 293, 44 (2007).   DOI   ScienceOn
9 S. McIntosh, J. F. Vente, W. G. Haije, D. H. A. Blank, and H. J. M. Bouwmeester, "Phase stability and oxygen non-stoichiometry of $SrCo_{0.8}Fe_{0.2}O_{3-{\delta}}$ measured by in situ neutron diffraction", Solid State Ion., 177, 833 (2006).   DOI   ScienceOn
10 S. Svarcivam, K. Wiik, J. Tolchard, H. J. M. Bouwmeester, and T. Grande, "Structural instability of cubic perovskite $Ba_xSr_{1-x}Co_{1-y}Fe_yO_{3-{\delta}}$", Solid State Ion., 178, 1787 (2008).   DOI   ScienceOn
11 M. Arnold, T. M. Gesing, J. Martynczuk, and A. Feldhoff, "Correlation of the Formation and the Decomposition Process of the BSCF Perovskite at Intermediate Temperatures", Chem. Mater., 20, 5851 (2008).   DOI   ScienceOn
12 S. K. Kim, M. J. Shin, J. Rufner, K. Benthem, J. H. Yu, and S. Kim, "$Sr_{0.95}Fe_{0.5}Co_{0.5}O_{3-{\delta}}$ dual-phase membrane: Oxygen permeability, phase stability, and chemical compatibility", J. Membr. Sci., 462, 153 (2014).   DOI   ScienceOn
13 J. H. Joo, G. S. Park, C. Y. Yoo, and J. H. Yu, "Contribution of the surface exchange kinetics to the oxygen transport properties in $Gd_{0.1}Ce_{0.9}O_{2-{\delta}}-La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ dual-phase membrane", Solid State Ion., 253, 64 (2013).   DOI   ScienceOn
14 K. H. Lee, "Membrane separation of carbon dioxide", Membrane Journal, 4, 78 (1994).
15 L. M. Liu, T. H. Lee, L. Qui, Y. L. Yang, and A. J. Jacobson, "A Thermogravimetric Study of the Phase Diagram of Strontium Cobalrt Iron Oxide, $SrCo_{0.8}Fe_{0.2}O_{3-{\delta}}$", Mater. Res. Bull., 31, 29 (1996).   DOI   ScienceOn
16 J. Sunarso, S. Baumann, J. M. Serra, W. A. Meulenberg, S. Lin, Y. S. Lin, and J. C. D. da Costa, "Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen sparation", J. Membr. Sci., 320, 13 (2008).   DOI   ScienceOn
17 L. Navarro, F. Marques, and J. Frade, "n-Type Conductivity in Gadolinia-Doped Ceria", J. Electrochem., 144, 267 (1997).   DOI
18 Z. Jiang, C. Xia, and F. Chen, "Nano-structured composite cathodes for intermediate-temperature solid oxide fuel cells via an infiltration/impregnation technique", Electrochimoca Acta., 55, 3595 (2010).   DOI   ScienceOn
19 V. V. Kharton, A. V. Kovalevsky, A. P. Viskup, J. R. Jurado, F. M. Figueredo, E. N. Naumovich, and J. R. Frade, "Transport Properies and Thermal Expansion of $Sr_{0.97}Ti_{1-x}Fe_xO_{3-{\delta}}$ (x = 0.2-0.8)", J. Solid State Chem., 156, 437 (2001).   DOI   ScienceOn
20 K. Iwasaki, T. Ito, T. Nagasakim, Y. Arita, M. Yoshino, and T. Matsui, "Thermoeletric properties of polycrystalline $La_{1-x}Sr_xCoO_{3-{\delta}}$", J. Solid State Chem., 181, 3145 (2008).   DOI   ScienceOn
21 R. A. D. Souza and J. A. Kilner, "Oxygen Transport in $La_{1-x}Sr_xMn_{1-y}Co_yO_{3{\pm}{\delta}}$ perovskites Part II Oxygen surface exchange", Solid State Ion., 126, 153 (1999).   DOI   ScienceOn
22 C. Y. Yoo and H. J. M. Bnouwmeester, "Oxygen surface exchange kinetics of $SrTi_{1-x}Fe_xO{3-{\delta}}$ mixed conducting oxides", Chem. Chem. Phys., 12, 11759 (2012).
23 J. P. Kim, D. W. Pyo, J. H. Park, and Y. Lee, "Preparation and Oxygen permeability of Tubular $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ Membranes with $La_{0.6}Sr_{0.4}Ti_{0.3}Fe_{0.7}O_{3-{\delta}}$ Porous Coating Layer", Membrane Journal, 22, 8 (2012).
24 F. Prado, N. Grunbaum, A. Caneir, and A. Manthirm, "Effect of $La^{3+}$ doping on the perovskite-to-bronwmillerite transformation in $Sr_{1-x}La_xCo_{0.8}Fe_{0.2}O_{3-{\delta}}$ ($0{\leq}x{\leq}0.4$)", Solid State Ion., 167, 147 (2004).   DOI   ScienceOn
25 F. S. Küppers, S. Baumann, W. A. Meulenberg, D. Stover, and H. Buchkremer, "Manufacturing and performance of advanced supported $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$(BSCF) oxygen transport membranes", J. Membr. Sci., 433, 121 (2013).   DOI   ScienceOn
26 V. Kharton, A. V. Kovalevsky, E. V. Tsipis, A. P. Viskup. E. N. Naumovich, J. R. Jurado, and J. R. Frade, "Mixed conductivity and stability of A-site-deficient $Sr(Fe,Ti)O_{3-{\delta}}$ perovskites", J. Solid State Electrochem., 7, 30 (2002).   DOI