• Title/Summary/Keyword: Electron Probe

Search Result 731, Processing Time 0.028 seconds

Properties of Indium Tin Oxide Thin Films According to Oxygen Flow Rates by γ-FIB System (γ-FIB 시스템을 이용한 산소 유량 변화에 따른 산화인듐주석 박막의 특성 연구)

  • Kim, D.H.;Son, C.H.;Yun, M.S.;Lee, K.A.;Jo, T.H.;Seo, I.W.;Uhm, H.S.;Kim, I.T.;Choi, E.H.;Cho, G.S.;Kwon, G.C.
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.6
    • /
    • pp.333-341
    • /
    • 2012
  • Indium Tin Oxide (ITO) thin films were prepared by RF magnetron sputtering with different flow rates of $O_2$ gas from 0 to 12 sccm. Electrical and optical properties of these films were characterized and analyzed. ITO deposited on soda lime glass and RF power was 2 kW, frequency was 13.56 MHz, and working pressure was $1.0{\times}10^{-3}$ Torr, Ar gas was fixed at 1,000 sccm. The transmittance was measured at 300~1,100 nm ranges by using Photovoltaic analysis system. Electrical properties were measured by Hall measurement system. ITO thin films surface were measured by Scanning electron microscope. Atomic force microscope surface roughness scan for ITO thin films. ITO thin films secondary electron emission coefficient(${\gamma}$) was measured by ${\gamma}$-Focused ion beam. The resistivity is about $2.4{\times}10^{-4}{\Omega}{\cdot}cm$ and the weighted average transmittance is about 84.93% at 3 sccm oxygen flow rate. Also, we investigated Work-function of ITO thin films by using Auger neutralization mechanism according to secondary electron emission coefficient(${\gamma}$) values. We confirmed secondary electron emission peak at 3 sccm oxygen flow rate.

Aerosol Deposition and Its Potential Use for Bioactive Ceramic Coatings

  • Hahn, Byung-Dong;Park, Dong-Soo;Lee, Jeong-Min;Choi, Jong-Jin;Ryu, Jung-Ho;Yoon, Woon-Ha;Lee, Byoung-Kuk;Choi, Joon-Hwan;Kim, Hyoun-Ee
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.41.1-41.1
    • /
    • 2009
  • Aerosol Deposition (AD) is anovel way to fabricate bioactive ceramic coatings in biomedical implants and prostheses applications. In the present work, silicon-substituted hydroxyapatite (HA) coatings on commercially pure titanium were prepared by aerosol deposition using Si-HA powders. The incorporation of silicon in the HA lattice is known to improve the bioactivity of the HA, makingsilicon-substitute HA an attractive alternative to pure HA in biomedical applications. Si-HA powders with the chemical formula $Ca_{10}(PO_4)_6-x(SiO_4)x(OH)_2-x$, having silicon contents up to x=0.5 (1.4 wt%), were synthesized by solid-state reaction of $Ca_2P_2O_7$, $CaCO_3$, and $SiO_2$. The Si-HA powders were characterized by X-ray diffraction (XRD), X-ray fluorescence spectrometry (XRF), and Fourier transform infrared spectroscopy(FT-IR). The corresponding coatings were also analyzed by XRD, scanning electron microscopy (SEM), and electron probe microanalyzer (EPMA). The results revealed that a single-phase Si-HA was obtained without any secondary phases such as $\alpha$- or $\beta$-tricalcium phosphate (TCP) for both the powders and the coatings.The Si-HA coating was about $5\;{\mu}m$ thick, had a densemicrostructure with no cracks or pores. In addition, the proliferation and alkaline phosphatase (ALP) activity of MC3T3-E1 preosteoblast cells grown on the Si-HA coatings were significantly higher than those on the bare Ti and pure HA coating. These results revealed the stimulatory effects induced by siliconsubstitution on the cellular response to the HA coating.

  • PDF

Property and Microstructure Evolution of Nickel Silicides on Nano-thick Polycrystalline Silicon Substrates (나노급 다결정 실리콘 기판 위에 형성된 니켈실리사이드의 물성과 미세구조)

  • Kim, Jong-Ryul;Choi, Young-Youn;Song, Oh-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.1
    • /
    • pp.16-22
    • /
    • 2008
  • We fabricated thermally-evaporated 10 nm-Ni/30 nm and 70 nm Poly-Si/200 nm-$SiO_2/Si$ structures to investigate the thermal stability of nickel silicides formed by rapid thermal annealing(RTA) of the temperature of $300{\sim}1100^{\circ}C$ for 40 seconds. We employed for a four-point tester, field emission scanning electron microscope(FE-SEM), transmission electron microscope(TEM), high resolution X-ray diffraction(HRIXRD), and scanning probe microscope(SPM) in order to examine the sheet resistance, in-plane microstructure, cross-sectional microstructure evolution, phase transformation, and surface roughness, respectively. The silicide on 30 nm polysilicon substrate was stable at temperature up to $900^{\circ}C$, while the one on 70 nm substrate showed the conventional $NiSi_2$ transformation temperature of $700^{\circ}C$. The HRXRD result also supported the existence of NiSi-phase up to $900^{\circ}C$ for the Ni silicide on the 30 nm polysilicon substrate. FE-SEM and TEM confirmed that 40 nm thick uniform silicide layer and island-like agglomerated silicide phase of $1{\mu}m$ pitch without residual polysilicon were formed on 30 nm polysilicon substrate at $700^{\circ}C\;and\;1000^{\circ}C$, respectively. All silicides were nonuniform and formed on top of the residual polysilicon for 70 nm polysilicon substrates. Through SPM analysis, we confirmed the surface roughness was below 17 nm, which implied the advantage on FUSI gate of CMOS process. Our results imply that we may tune the thermal stability of nickel monosilicide by reducing the height of polysilicon gate.

Mechanical and Electrical Properties of Electrospun CNT/PVDF Nanofiber for Micro-Actuator (미세-작동기를 위한 전기방사 CNT/PVDF 나노섬유 기반의 탄소 복합재의 기계적 및 전기적 특성 평가)

  • Gu, Ga-Young;Wang, Zuo-Jia;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.26 no.1
    • /
    • pp.14-20
    • /
    • 2013
  • The electrospun PVDF containing CNT was made for fabricating materials of the actuator. The electrochemical and their actuating movement were evaluated for the actuator performance in the electrochemical environment. The actuator (which was fabricated by electrospinning) had some advantages, i.e., good dispersion and flexible properties. In the electrospinning process, the final product would have different forms based on different essential factors. In this work, electrospun nanofibers were aligned by using the drum-type collector, and the morphology was identified via the field emission-scanning electron microscope (FE-SEM). The uniform dispersion of CNT in PVDF nanofiber was observed by electron probe X-ray micro-analysis (EPMA) test. The results of tensile strength and electrical resistivity provided the aligned state. The electrospun CNT/PVDF nanofiber sheet on the aligned direction showed better mechanical and electrical properties than the case of the vertically-aligned direction. The efficiency and electrical capacities of electrospun CNT/PVDF nanofiber sheets were compared with the cast PVDF sheet for actuator application. Electrospun CNT/PVDF nanofiber sheet exhibited much better the case of actuator performance than cast neat PVDF actuator, due to the excellent electrical connecting areas.

Migration Mechanism of Hazard Elements from Brass Kitchenwares (황동제 주방기구에서 유해중금속의 용출기작에 관한연구)

  • Lee, Kwang-Ho;Kwon, Ki-Sung;Jeon, Dae-Hoon;Choi, Byung-Hee;Kim, Sung-Wook;Lee, Sun-Hee;Lee, Chul-Won
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.5 no.2
    • /
    • pp.24-30
    • /
    • 1999
  • The migration mechanism of trace elements, Pb, Cd, Cu, Zn and Sn from brass food-contact utensiles was investigated. The migration of metals from brass was affected by the migration temperature (30, 60, 80 and $95^{\circ}C$), the simulant pH (2.5, 4.3, 6.0 and 7.0) and the migration time (30, 90, 180 and 360 min.). The amount of Pb migration was maximum at $95^{\circ}C$ with pH 2.5. This study indicated that the equilibrium of Pb migration was reached at 180 minutes. The mechanism of Pb migration was investigated with Scanning Electron Microscope (SEM) and Electron Probe Micro Analyzer (EPMA). To correlate the relations between the migration and the content of Pb in brass samples, ten brass samples having known content of Pb (the quantities of Pb in brass ; 0, 0.02, 0.09, 0.1, 0.2, 0.5, 0.9, 1.4, 5.4 and 9.2% (w/w)) were tested in the following conditions, 4% acetic acid, $95^{\circ}C$ and 30 minutes. The result represented that content of Pb in brass samples must be below 0.2% (w/w) to satisfy the 1.0 ppm (as Pb) of Korea Food Code.

  • PDF

The Preliminary Study of the Secondary Precipitates from Samsanjeil and Sambong Mine, Goseong, Gyeongnam (경남 고성군 삼산면 삼산제일광산과 삼봉광산 주변 하천 침전물에 관한 예비 연구)

  • Cho, Hyen-Goo;Chang, Byoung-Jun;Kim, Soon-Oh;Choo, Chang-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.3 s.49
    • /
    • pp.129-138
    • /
    • 2006
  • In this study, we identified the secondary precipitates from Samsan-jeil and Sambong mine, Goseong, Gyeongnam by means of scanning electron microscopy, electron probe microanalysis and X-ray powder diffraction analysis. Copper sulfide minerals had been produced from the mines during last few decades, however they are not worked. White and blue precipitates were found at the downstream of mine rock dump at Sambong mine and green one was at Samsan-jeil mine. The white precipitate covered the host rock surface with thickness of $30{\mu}m$, and is a kind of diatom with $10{\mu}m$ in length and $3{\mu}m$ in width. It is a species Fragilaria constuens, which is contained a order Pennales(pennate diatom) and lives in fresh water. The blue precipitate is the alteration product of chalcopyrite. It resultes in the increase in the ratio Cu:Fe from 5 to 13. The green precipitate has worm-like morphology with $10{\sim}20nm$ in diameter and $200{\sim}300nm$ in length. It is mainly composed of secondary copper sulfate such as woodwardite. However, it could be formed by the activity of microorganism, because the copper content is more than any secondary copper sulfate reported in copper sulfide mine. In order to identity the green precipitate exactly, the further research is needed.

Effect of Indium on the Microstructures and Mechanical Properties of Au-Pt-Cu Alloys (Au-Pt-Cu계 합금의 미세구조 및 기계적 특성에 미치는 첨가원소 Indium 효과에 관한 연구)

  • 이상혁;도정만;정호년;민동준
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.203-208
    • /
    • 2003
  • The effect of indium on the microstructure and hardness of a Au-Pt-Cu ternary alloy was investigated using optical microscopy, differential scanning calorimeter, scanning electron microscopy x-ray diffractometry, electron probe microanalizer and vickers hardness tester. A hardness of the solution floated Au-Pt-Cu-0.5In quarternary alloy with 0.5 wt.% was reached a maximum value (162 Hv) in 30 min at 550$^{\circ}C$ in the range of 150 to 950$^{\circ}C$ but that of the alloy was rapidly increased until 30 min with increasing aging time at 550$^{\circ}C$ and after that was remained almost constant value. Also, the microhardness of the matrix Au-Pt-Cu ternary alloy aged at 550$^{\circ}C$ for 30 min was continuously increased with indium contents and the grain size of Au-Pt-Cu ternary alloy decreased as increased indium contents. Analyses of EPMA and XRD revealed that the matrix Au-Pt-Cu-In quarternary alloy is composed of fcc structure and intermetallic InPt$_3$ precipitate with Ll$_2$ structure. Based on this investigation, it can be concluded that an increase in microhardness of Au-Pt-Cu-In quarternary alloy is due to precipitation hardening InPt$_3$ and grain size refinement.

The beneficial effect of ginsenosides extracted by pulsed electric field against hydrogen peroxide-induced oxidative stress in HEK-293 cells

  • Liu, Di;Zhang, Ting;Chen, Zhifei;Wang, Ying;Ma, Shuang;Liu, Jiyun;Liu, Jingbo
    • Journal of Ginseng Research
    • /
    • v.41 no.2
    • /
    • pp.169-179
    • /
    • 2017
  • Background: Ginsenosides are the main pharmacological components of Panax ginseng root, which are thought to be primarily responsible for the suppressing effect on oxidative stress. Methods: 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and oxygen radical absorption capacity were applied to evaluate the antioxidant activities of the ginsenosides. Human embryonic kidney 293 (HEK-293) cells were incubated with ginsenosides extracted by pulsed electric field (PEF) and solvent cold soak extraction (SCSE) for 24 h and then the injury was induced by $40{\mu}M$ $H_2O_2$. The cell viability and surface morphology of HEK-293 cells were studied using MTS assay and scanning electron microscopy, respectively. Dichloro-dihydro-fluorescein diacetate fluorescent probe assay was used to measure the level of intracellular reactive oxygen species. The intracellular antioxidant activities of ginsenosides were evaluated by cellular antioxidant activity assay in HepG2 cells. Results: The PEF extracts displayed the higher 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and stronger oxygen radical absorption capacity (with an oxygen radical absorption capacity value of $14.48{\pm}4.04{\mu}M\;TE\;per\;{\mu}g/mL$). The HEK-293 cell model also suggested that the protective effect of PEF extracts was dose-dependently greater than SCSE extracts. Dichloro-dihydro-fluorescein diacetate assay further proved that PEF extracts are more active (8% higher than SCSE extracts) in reducing intracellular reactive oxygen species accumulation. In addition, scanning electron microscopy images showed that the HEK-293 cells, which were treated with PEF extracts, maintained more intact surface morphology. Cellular antioxidant activity values indicated that ginsenosides extracted by PEF had stronger cellular antioxidant activity than SCSE ginsenosides extracts. Conclusion: The present study demonstrated the antioxidative effect of ginsenosides extracted by PEF in vitro. Furthermore, rather than SCSE, PEF may be more useful as an alternative extraction technique for the extraction of ginsenosides with enhanced antioxidant activity.

The Enhancement of Thermal Stability of Nickel Monosilicide by Ir and Co Insertion (Ir과 Co를 첨가한 니켈모노실리사이드의 고온 안정화 연구)

  • Yoon, Ki-Jeong;Song, Oh-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1056-1063
    • /
    • 2006
  • Thermal evaporated 10 nm-Ni/l nm-Ir/(or polycrystalline)p-Si(100) and 10 nm-$Ni_{50}Co_{50}$/(or polycrystalline)p-Si(100) films were thermally annealed using rapid thermal annealing fur 40 sec at $300{\sim}1200^{\circ}C$. The annealed bilayer structure developed into Ni(Ir or Co)Si and resulting changes in sheet resistance, microstructure, phase and composition were investigated using a four-point probe, a scanning electron microscopy, a field ion beam, an X-ray diffractometer and an Auger electron spectroscope. The final thickness of Ir- and Co-inserted nickel silicides on single crystal silicon was approximately 20$\sim$40 nm and maintained its sheet resistance below 20 $\Omega$/sq. after the silicidation annealing at $1000^{\circ}C$. The ones on polysilicon had thickness of 20$\sim$55 nm and remained low resistance up to $850^{\circ}C$. A possible reason fur the improved thermal stability of the silicides formed on single crystal silicon substrate is the role of Ir and Co in preventing $NiSi_2$ transformation. Ir and Co also improved thermal stability of silicides formed on polysilicon substrate, but this enhancement was lessened due to the formation of high resistant phases and also a result of silicon mixing during high temperature diffusion. Ir-inserted nickel silicides showed surface roughness below 3 nm, which is appropriate for nano process. In conclusion, the proposed Ir- and Co- inserted nickel silicides may be superior over the conventional nickel monosilicides due to improved thermal stability.

  • PDF

High rate deposition of poly-si thin films using new magnetron sputtering source

  • Boo, Jin-Hyo;Park, Heon-Kyu;Nam, Kyung-Hoon;Han, Jeon-Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.186-186
    • /
    • 2000
  • After LeComber et al. reported the first amorphous hydrogenated silicon (a-Si: H) TFT, many laboratories started the development of an active matrix LCDs using a-Si:H TFTs formed on glass substrate. With increasing the display area and pixel density of TFT-LCD, however, high mobility TFTs are required for pixel driver of TF-LCD in order to shorten the charging time of the pixel electrodes. The most important of these drawbacks is a-Si's electron mobiliy, which is the speed at which electrons can move through each transistor. The problem of low carier mobility for the a-Si:H TFTs can be overcome by introducing polycrystalline silicon (poly-Si) thin film instead of a-Si:H as a semiconductor layer of TFTs. Therefore, poly-Si has gained increasing interest and has been investigated by many researchers. Recnetly, fabrication of such poly-Si TFT-LCD panels with VGA pixel size and monolithic drivers has been reported, . Especially, fabricating poly-Si TFTs at a temperature mach lower than the strain point of glass is needed in order to have high mobility TFTs on large-size glass substrate, and the monolithic drivers will reduce the cost of TFT-LCDs. The conventional methods to fabricate poly-Si films are low pressure chemical vapor deposition (LPCVD0 as well as solid phase crystallization (SPC), pulsed rapid thermal annealing(PRTA), and eximer laser annealing (ELA). However, these methods have some disadvantages such as high deposition temperature over $600^{\circ}C$, small grain size (<50nm), poor crystallinity, and high grain boundary states. Therefore the low temperature and large area processes using a cheap glass substrate are impossible because of high temperature process. In this study, therefore, we have deposited poly-Si thin films on si(100) and glass substrates at growth temperature of below 40$0^{\circ}C$ using newly developed high rate magnetron sputtering method. To improve the sputtering yield and the growth rate, a high power (10~30 W/cm2) sputtering source with unbalanced magnetron and Si ion extraction grid was designed and constructed based on the results of computer simulation. The maximum deposition rate could be reached to be 0.35$\mu$m/min due to a high ion bombardment. This is 5 times higher than that of conventional sputtering method, and the sputtering yield was also increased up to 80%. The best film was obtained on Si(100) using Si ion extraction grid under 9.0$\times$10-3Torr of working pressure and 11 W/cm2 of the target power density. The electron mobility of the poly-si film grown on Si(100) at 40$0^{\circ}C$ with ion extraction grid shows 96 cm2/V sec. During sputtering, moreover, the characteristics of si source were also analyzed with in situ Langmuir probe method and optical emission spectroscopy.

  • PDF