• Title/Summary/Keyword: Electromagnetic Scattering Analysis

Search Result 165, Processing Time 0.029 seconds

Solution of TE Scattering Applying FGMM for Resistive Strip Grating Between a Grounded Double Dielectric Layer (접지된 2중 유전체층 사이의 저항띠 격자에 대해 FGMM을 적용한 TE 산란 해)

  • Uei-Joong Yoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.3
    • /
    • pp.71-76
    • /
    • 2023
  • In this paper, TE(transverse electric) scattering problems by a resistive strip grating between a grounded double dielectric layer are analyzed by applying the FGMM(fourier galerkin moment method) known as a numerical method of electromagnetic fileld. The boundary conditions are applied to obtain the unknown field coefficients, the scattered electromagnetic fields are expanded in a series of Floquet mode functions, and the resistive boundary condition is applied to analysis of the resistive strip. Overall, as the resistivity decreased, the magnitude of the current density induced in the resistive strip increased, and the reflected power also increased. In case of uniform resistivity, the reflected power decreased as the relative permittivity of the dielectric layers increased or the thickness of the dielectric layer increased. The numerical results for the presented structure in this paper are shown in good agreement compared to those of the existing papers.

Novel Analysis of Waveguide Stub Structure Using Iterative Green's Function Method (반복 그린 함수 방법을 이용한 도파관 스텁 구조의 새로운 해석법)

  • Cho, Yong-Heui
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.2
    • /
    • pp.125-131
    • /
    • 2007
  • An iterative Green's function method (IGFM) is introduced in order to analyze complex electromagnetic waveguide stub structures in view of a university student. The IGFM utilizes a Green's function approach and an regional iteration scheme. A physical iteration mechanism with simple mathematical equations facilitates clear formulations of the IGFM. Scattering characteristics of a standard E-plane T-junction stub in a parallel-plate waveguide are theoretically investigated in terms of the IGFM. Numerical computations illustrate the characteristics of reflection and transmission powers versus frequency.

Diffraction of gaussian beam wave by finite periodic conducting strip grating on a grounded dielectric slab (접지된 유전체층위에 주기적인 스트립구조로서 구성되어 있는 유한한 격자구조에 의한 가우시안 빔의 회절특성)

  • 이종익;조영기
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.10
    • /
    • pp.45-52
    • /
    • 1997
  • An analysis method for the electromagnetic scattering of a gaussian beam wave by finite periodic conducting strip grating on a groudned dielectric slab is considered. The intergral equation for the unknown current induced on the conducting strip surface is derived and solbed numerically by use of the method of moment. From knowledge of the strip current, the quantities of interest such as radiation pattern, the space wave power radiated into the free space, and the coupled surface wave power propagating along the dielectric slab are computed for the appropriately chosen parametes Some similarity between scattering behaviours of the present geometry and the infinite geometry is examined by observing the Off-bragg as well as bragg blaxing penomena in both geometries.The validity of the numerical results are assured by a check of the power conservation relations.

  • PDF

Computation of Radar Cross Section from Arbitrarily Shaped Composite Objects Using Combined Field Integral Equation (결합 적분방정식을 이용한 임의 형태 복합구조의 레이더 단면적 산출)

  • 한상호;정백호;윤희상
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.1
    • /
    • pp.41-46
    • /
    • 2004
  • In this paper, we present a new combined field integral equation (CFIE) formulation for the analysis of electromagnetic scattering from arbitrarily shaped three-dimensional perfectly conducting and piecewise homogeneous dielectric composite body. The conducting/dielectric structures are approximated by planar triangular patches, which have the ability to conform to any geometrical surface. The surface covering the conducting body is replaced by an equivalent surface electric current and the surface of the dielectric by equivalent electric and magnetic currents. The all equivalent currents are approximated in terms of RWG (Rao, Wilton, Glisson) functions. The objective of this paper is to illustrate that the CFIE is a valid methodology in removing defects, which occur at a frequency corresponding to an internal resonance of the structure. Numerical results are presented and compared with solutions obtained using other formulations.

pH-Dependent Surface-enhanced Raman Scattering Analysis of Maleimide and Succinimide on Ag Nanocolloidal Surfaces

  • Joo, Sang-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.9
    • /
    • pp.1761-1764
    • /
    • 2008
  • The adsorption structure and binding of maleimide (MI) and succinimide (SI) on silver nanocolloidal surfaces have been comparatively investigated by means of pH-varied surface-enhanced Raman scattering (SERS). The two molecules appeared not to adsorb onto Ag surfaces at pH values below 5. The appearance of a ring ν (CH) band at ~3100 $cm^{-1}$ denoted the standing geometry of MI’s aromatic ring on Ag. The absence or weakness of in-plane vibrational modes of MI and SI also supported a perpendicular orientation of MI and SI on Ag from the electromagnetic selection rule. Density functional theory (DFT) calculations were employed to examine the vibrational frequencies of MI’s and SI’s neutral and anionic states.

Scattering by Arbitrary Shaped Grating Covered with Dielectric Slab (유전체로 덮힌 임의 형태 격자구조의 산란)

  • Jo, Ung-Hui;Jo, Yeong-Gi
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.12
    • /
    • pp.9-14
    • /
    • 2000
  • A numerical method for scattering of electromagnetic waves from a arbitrary shaped grating covered with dielectric slab is considered for TE polarization case from the viewpoints of both reflection grating problem and leaky wave antenna problem. The analysis is based on a periodic Green's function and the method of moments. Numerical results involving some combinations of geometric parameters are presented in terms of relative scattered powers of spectral modes and complex propagation constants.

  • PDF

Full Wave Analysis of EM Absorbers Using 3D Hybrid Finite Element Method (3차원 혼성 유한요소법을 이용한 전파흡수체의 전파 특성 해석)

  • 정영춘;김병욱;박동철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.3
    • /
    • pp.440-448
    • /
    • 1999
  • This paper describes a full wave analysis of the scattering from electromagnetic absorbers which can be approximated as infinite periodic structure using hybrid finite element method. By introducing fictitious boundaries, equivalent finite region is defined and proper boundary conditions of each boundary are obtained by Floquet theorem. Since higher-order Floquet modes are employed, the method presented in this paper can be readily applied to the periodic structure haying a relatively long period. To reduce difficulty in evaluating the surface integral, the normal component to the surface were represented with the tangential component to the surface. Comparisons of calculated results with analytical or published ones show the validation of the method.

  • PDF

A Study on the Characteristics Analysis According to the Permanent Magnet Segmentation Change to IPMSM for Urban Railway Vehicle (도시철도차량용 IPMSM의 Magnet Segment 변화에 따른 특성 분석에 관한 연구)

  • Jeong, Geochul;Park, Chan-Bae;Jeong, Taechul;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.10
    • /
    • pp.1486-1492
    • /
    • 2015
  • The following study carried out the characteristic analysis based on the magnet segment of Interior Permanent Magnet Synchronous Motor(IPMSM) for the urban railway vehicles. IPMSM affects the electromagnetic characteristics through the change in magnetic flux based on the rotor structure, and significantly influences the structural features through the change of pressure. Therefore, satisfied by the demanded traction force of the IPMSM, magnet segment derived three different model types. The 1-segment PM model consisted an undivided permanent magnet. The 2-Bridge model consisted a divided permanent magnet with the application of Bridge. The 3-Bridge model consisted additional dividing with one more Bridge applied. The electromagnetic characteristics of the three models were compared and analyzed along with the structural features regarding the scattering of permanent magnet based on strong centrifugal force from the rotation of the rotor at high speed. In conclusion, the final model with electromagnetic characteristics and structural features most suitable of IPMSM for the urban railway vehicles was derived, and the effectiveness was verified through the characteristic experiments after the production of the derived model.

Analysis of the Electromagnetic Scattering by a Tapered Resistive Strip Grating with Zero Resistivity at the Strip-Edges On a Grounded Dielectric Plane (접지된 유전체층 위에 저항띠 양끝에서 0으로 변하는 저항율을 갖는 저항띠 격자구조에서의 전자파 산란 해석)

  • 정오현;윤의중;양승인
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11A
    • /
    • pp.883-890
    • /
    • 2003
  • In this paper, Electromagnetic scattering problems by a resistive strip grating with tapered resistivity on a grounded dielectric plane according as strip width and spacing, relative permittivity and thickness of dielectric layers, and incident angles of a electric wave are analyzed by applying the FGMM(Fourier-Galerkin Moment Method) Known as a numerical procedure. The scattered electromagnetic fields are expanded in a series of floguet mode functions. The boundary conditions are applied to obtain the unknown field coefficients and the resistive boundary condition is used for the relationship between the tangential electric field and the electric current density on the strip. The tapered resistivity of resistive strips varies zero resistivity at strip edges. Then the induced surface current density on the resistive strip is expanded in a series of Chebyshev polynomials of the second kind. The numerical results of the geometrically in this paper are compared with those for the existing uniform resistivity and perfectly conducting strip. The numerical results of the normalized reflected power for conductive strips case with zero resistivity in this paper show in good agreement with those of existing paper.

Analysis of Electromagnetic Scattering by Resistive Strip Grating with Zero Resistivity at the Strip-Edges On a Grounded 2 Dielectric Layers (접지된 2개의 유전층위에 저항띠 양끝에서 0으로 변하는 저항띠 격자구조에서의 전자파산란 해석)

  • Yoon, Uei-Joong
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.2
    • /
    • pp.152-158
    • /
    • 2006
  • In this paper, electromagnetic scattering problems by a resistive strip grating with zero resistivity at the strip-edges on a grounded 2 dielectric layers according as strip width and spacing, relative permittivity, thickness of dielectric layers, and incident angles of a electric wave are analyzed by applying the FGMM(Fourier-Galerkin Moment Method) known as a numerical procedure. The scattered electromagnetic fields are expanded in a series of floguet mode functions. The boundary conditions are applied to obtain the unknown field coefficients and the resistive boundary condition is used for the relationship between the tangential electric field and the electric current density on the strip. The tapered resistivity of resistive strips varies zero resistivity at strip edges. Then the induced surface current density on the resistive strip is expanded in a series of Chebyshev polynomials of the second kind. The normalized reflected power with zero resistivity in this paper show in good agreement with those of existing paper.

  • PDF