• Title/Summary/Keyword: Electromagnetic Design

Search Result 2,801, Processing Time 0.036 seconds

Design of Super Wide-Band Electromagnetic Wave Absorbers Using Cross-Slotted Ferrite in the Double-Layered Type (십자형 슬롯을 가지는 적층형 초광대역 페라이트 전파흡수체의 설계)

  • 김동일;전상엽
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.4
    • /
    • pp.346-352
    • /
    • 1996
  • A wide-band design method of double layered electromagnetic wave absorbers cross-slotted in the second layer(which has very wide band frequency characteristics) is proposed and discussed. The wide-band electromagnetic wave absorber can be designed under some approximations by the the- oretical model using the equivalent material constants method applied to the second layer. Based on the developed model, wide-band electromagnetic wave absorbers with excellent reflectivity characteristics in the frequency range of 30MHz to 3, 170MHz were designed.

  • PDF

A Study on the Development of a Hybrid Electromagnetic Actuator Against Microvibration (미진동 저감을 위한 복합형 전자기식 작동기의 개발에 대한 연구)

  • Moon, S.J.;Park, S.H.;Jeong, J.A.;Huh, Y.C.;Kim, C.H.;Choi, S.M.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.5
    • /
    • pp.475-483
    • /
    • 2011
  • A hybrid electromagnetic actuator with an air mount is designed so as to achieve the desired isolation reduce the vibration efficiency on the floor vibration. The performance specification of the hybrid electromagnetic actuator is determined based on the vibration criterion for vibration-sensitive equipment. In the design stage of the electromagnetic actuator, the simple reluctance method is adapted to analyze magnetic circuits. The result is verified by finite element analysis using ANSYS Emag. Finally, in order to confirm the design performance, a dynamic characteristic test is carried out for the prototype of a hybrid electromagnetic actuator.

EMC Design of Communication System on the basis of EMC Design Rule (EMC Design Rule을 이용한 통신 System의 EMC Design)

  • 박학병;박종성;이승한;강석한;박현길
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.272-276
    • /
    • 2000
  • 본 논문에서는 I/O Cable을 가지는 일반 통신시스템의 전자파 방사 Mechanism을 분석하고, Design에 있어 중요한 Parameter를 도출하였다. 중요한 Design Parameter로 도출된 I/0 Cable의 Coupling mechanism을 실험 및 상용 Software를 이용한 Simulation방법에 의해 분석하고, 이에 대한 EMC Design Rule을 제시하였다. 도출된 EMC Design Rule을 준수하여 Design을 실현하고, 그 효과를 분석하였다. EMC Design Rule에 기반을 둔 개발을 통해 제품의 Redesign및 복잡한 Debug 과정이 없이 효과적으로 전자파 양립성 규격을 만족하였다.

  • PDF

Electromagnetic Structural Design Analysis and Performance Improvement of AFPM Generator for Small Wind Turbine

  • Jung, Tae-Uk;Cho, Jun-Seok
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.374-378
    • /
    • 2011
  • Axial Field Permanent Magnet (AFPM) generators are widely applied for the small wind turbine because of the higher power density per unit weight than that of the conventional radial field generator. It is caused by the disc shaped rotor and the stator structures. The generally used AFPM generator, AFER-NS generator, is composed of the two side's external rotors and non-slotted stator without stator core. However, the output voltage and the output power are limited by the large reluctance by the long air-gap flux paths. In this paper, the design study of AFIR-S generator having double side's slotted stator core is accomplished to improve the output generation characteristics. The electromagnetic design analysis and the design improvement of the suggested AFIR-S generator are studied. Firstly, the electromagnetic design analysis was done to increase the power density. Secondly, the design optimizations of the rotor pole-arc ratio of permanent magnet are accomplished to increase the output power and to reduce the cogging torque. Finally, the output performances of AFER-NS and AFIR-S generator are compared with each other. For this study, 3D FEA is applied for the design analysis because of three dimensional electromagnetic structures.

Application Limits of Transmission Line Approximations for Design of Electromagnetic Absorbers (전파흡수체 설계에 있어서 전송선로 근사방법의 적용 한계)

  • 정연춘;김병욱;박동철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.3
    • /
    • pp.449-459
    • /
    • 1999
  • The scattering problems from electromagnetic absorbers can be greatly simplified using the transmission line approximations (TLA) and effective medium theory. This method has been widely used for the absorber design because of its very simple calculation and intuitional approach, while numerical analysis needs the tremendous computation requirements, This paper examined the accuracy and limitations originated by the intrinsic approximation limits of TLA by comparison with FEM results for various absorber design examples. It was found that the TLA result is valid when λ $\geq$ 2p, where λ is the wavelength of the interested upper frequency and p is the distance between two periodic cone arrays. Therefore, the electromagnetic absorbers having high material properties and big base-area commonly do not meet this condition, and the electromagnetic scattering from those absorbers must be evaluated by the numerical analysis in those cases.

  • PDF

Application of Open Source, Big Data Platform to Optimal Energy Harvester Design (오픈소스 기반 빅데이터 플랫폼의 에너지 하베스터 최적설계 적용 연구)

  • Yu, Eun-seop;Kim, Seok-Chan;Lee, Hanmin;Mun, Duhwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.1-7
    • /
    • 2018
  • Recently, as interest in the internet of things has increased, a vibration energy harvester has attracted attention as a power supply method for a wireless sensor. The vibration energy harvester can be divided into piezoelectric types, electromagnetic type and electrostatic type, according to the energy conversion type. The electromagnetic vibration energy harvester has advantages, in terms of output density and design flexibility, compared to other methods. The efficiency of an electromagnetic vibration energy harvester is determined by the shape, size, and spacing of coils and magnets. Generating all the experimental cases is expensive, in terms of time and money. This study proposes a method to perform design optimization of an electromagnetic vibration energy harvester using an open source, big data platform.

Optimal Design of Inverse Electromagnetic Problems with Uncertain Design Parameters Assisted by Reliability and Design Sensitivity Analysis

  • Ren, Ziyan;Um, Doojong;Koh, Chang-Seop
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.266-272
    • /
    • 2014
  • In this paper, we suggest reliability as a metric to evaluate the robustness of a design for the optimal design of electromagnetic devices, with respect to constraints under the uncertainties in design variables. For fast numerical efficiency, we applied the sensitivity-assisted Monte Carlo simulation (S-MCS) method to perform reliability calculation. Furthermore, we incorporated the S-MCS with single-objective and multi-objective particle swarm optimization algorithms to achieve reliability-based optimal designs, undertaking probabilistic constraint and multi-objective optimization approaches, respectively. We validated the performance of the developed optimization algorithms through application to the optimal design of a superconducting magnetic energy storage system.

Design and Evaluation of An Electromagnetic Driven Actuator for Near-field Optical Recording System (근접장 광기록 시스템용 전자기구동 액추에이터의 설계 및 평가)

  • 김석중;이용훈;이철우;서중언
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.11
    • /
    • pp.2732-2741
    • /
    • 2000
  • Combination of magnetic recording technology and optical recording technology such as Near Field Optical Recording is watched recently. In order to accomplish this technology, the development of an electromagnetic driven mm-sized mirror shifting laser beam in track direction have to needed. In Near Field Optical Recording System, shifting laser beam in track direction mean as fine tracking and means as coarse tracking. Therefore in Near Field Optical Recording, 2-stage actuator is composed of servo controller in reading or recording information on disc layer. In our research, through design and simulation process of driven mm-sized mirror, we arrange systematically design process of driven mm-sized mirror having good frequency transfer characteristics. Design and simulation processes included modal analysis of spring, calculation of magnetic moment according to the number of turns and geometric configuration of coil and magnetic circuit analysis meaning that calculation of magnetic flux density in air gap of magnetic circuit. After that we design and make parts of driven mm-sized mirror, assemble and evaluate our electriomagnetic driven mm-sized mirror. we compared design values with actual characteristic values and present solution scheme. Through these processes we performed manufacturing of an electromagnetic driven mm-sized mirror having good frequency-domain characteristics and high sensitivity characteristics.

A Design of High-Speed Linear Actuator for Valve (밸브 구동용 고속 리니어 액추에이터)

  • Sung, B.J.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2011
  • The main design factors which effect on operating speed of linear actuator for valve operation are mass of plunger, electromagnetic motive force, inductance, and return spring, and these factors are not independent but related with each other in view point of design and electromagnetic theory. It is impossible to increase the operating speed by only change the value of any one design factor. The change of any one value results in change of any value related it in various design factors. This paper presents a speed increasing method of linear actuator using a solenoid design method by some governing equations which are composed of electromagnetic theory and empirical knowledge and permanent magnets as assistant material, and proved the propriety by experiments.

A New Reliability-Based Optimal Design Algorithm of Electromagnetic Problems with Uncertain Variables: Multi-objective Approach

  • Ren, Ziyan;Peng, Baoyang;Liu, Yang;Zhao, Guoxin;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.704-710
    • /
    • 2018
  • For the optimal design of electromagnetic device involving uncertainties in design variables, this paper proposes a new reliability-based optimal design algorithm for multiple constraints problems. Through optimizing the nominal objective function and maximizing the minimum reliability, a set of global optimal reliable solutions representing different reliability levels are obtained by the multi-objective particle swarm optimization algorithm. Applying the sensitivity-assisted Monte Carlo simulation method, the numerical efficiency of optimization procedure is guaranteed. The proposed reliability-based algorithm supplying multi-reliable solutions is investigated through applications to analytic examples and the optimal design of two electromagnetic problems.