• Title/Summary/Keyword: Electrolytic Etching

Search Result 41, Processing Time 0.033 seconds

Etch Pit Growth on Aluminum of Cathode Film for Aluminum Electrolytic Capacitor (알루미늄 전해 커패시터용 음극박의 에칭 피트 성장)

  • Kim, Hong-Il;Choi, Ho-Gil;Kim, Sung-Han;Kim, Young-Sam;Shin, Jin-Sik;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.407-408
    • /
    • 2005
  • High surface area electrodes for aluminum electrolytic capacitors are produced by AC electrochemical processes. Optimization of crystallographic etch pit growth on aluminium during AC etching of cathode film for aluminium as electrolytic capacitor has been established. In this work, we present the observations of pit distributions by galvanostatic measurements. The effects of electrolyte concentration, current density, frequency, various pre-treatments and etching time have been studied. The specimen was pretreated in 0.5M NaOH and 1M HCl at $40\sim60^{\circ}C$, and transferred into a cell containing 1M HCl, then various mol $H_2SO_4$ etchant was added. Pit size distributions were determined with scanning electron microscopy (SEM).

  • PDF

Sample Preparation for Microstructural Characterization of Ni-Yttria-Stabilized Zirconia Anodes

  • Sim, Soo-Man
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.4
    • /
    • pp.376-380
    • /
    • 2018
  • Microstructural characterization of Ni-yttria-stabilized zirconia (YSZ) anodes using secondary electron images has been limited by a lack of contrast between Ni and YSZ phases. This paper reports a sample preparation method for obtaining secondary electron images that allow the detection of Ni, YSZ, and pore phases together. Ni-YSZ anode samples were obtained by reducing NiO-YSZ samples prepared by using the mixed oxide method. Colloidal silica polishing and electrolytic etching were performed on the Ni-YSZ samples. The morphological change of the sample surface after each polishing process is examined.

The Influence of Electrolytic Condition on Tunnel Etching and Capacitance Gain of High purity Aluminium Foil on capacitor (전해조건이 고순도 알루미늄 박 콘덴서의 터널에칭과 정전용량에 미치는 영향)

  • 이재운;이병우;김용현;이광학;김흥식
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.1
    • /
    • pp.44-56
    • /
    • 1997
  • Influence of electrochemical etching conditions on capacitance gain of aluminium electrolytic on capacitor foil has been investigated by etching cubic textured high purity aluminum foil in dilute hydrochloric acid. Uniformly distributed etch pit tunnels on aluminum surface have been obtained by pretreatment aluminium foil in 10% NaOH solution for 5 minutes followed by electrochemical etching. Electrostatic capacitance of etched aluminium foil anodized to high voltage increased with the increase of current density, total charge, temperature and concentration of electrolyte up to maximum CV-value and then deceased. Election optical observation of the etched foil revealed that the density of etch of etch pits increased with the increase of current density and concentration of electrolyte. this increase of etch pit density enlarged of the increase of capacitance. However, abnormal high current density and high electrolyte concentration induced the local dissolution of the foil surface which resulted the decrease of foil capacitance.

  • PDF

Surface Treatment of Dielectric Ceramic Resonator for High Frequency Devices (고주파용 유전체 세라믹 공진기의 표면처리)

  • Park, Hae-Duck;Kang, Sung-Goon
    • Korean Journal of Materials Research
    • /
    • v.11 no.11
    • /
    • pp.923-928
    • /
    • 2001
  • An electrolytic silver plating process has been successfully developed for terminated electrode parts of dielectric ceramic resonator. High adhesion strength and high Qu is obtained and blister occurance is minimized under plating condition with $HNO_3$750 $m\ell/\ell$ and HF $ 250m\ell/\ell$ solution at $25^{\circ}C$ for 20 minutes. Adhesion strength has the highest value, 3.2 kg/mm$^2$ at etching temperature of $25^{\circ}C$. Adhesion strength, Qu and blister occurance are monotonically increased with the thickness of electrodeposition layer. In case of electrodeposition of Ag, Qu value of 380 has obtained higher than in case of electrolytic Cu plating with Qu value of 325. Therefore, terminated electrode parts of dielectric ceramic resonator reducing dielectric loss can be obtained using prensent process.

  • PDF

The Characteristics of Electrolyte Temperature and Current Density on Selective Jet Electrodeposition (선택적 금속 전착에 대한 전해질 온도 및 전류밀도 영향분석)

  • Park, Chan-Kyu;Kim, Sung-Bin;Kim, Young-Kuk;Yoo, Bongyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.6
    • /
    • pp.400-404
    • /
    • 2018
  • A metal 3D printer has been developed on its own to electrodeposit the localized area. Nozzles were used to selectively laminate the electrolytic plating method. To analyze the factors affecting the deposition, the stack height, thickness and surface roughness were experimentally analyzed according to the current density and the temperature of the electrolyte. Electrolytic temperature and current are electrodeposited when the deposition conditions are dominant over the etching conditions, but the thickness is kept constant. On the contrary, when the etching conditions are dominant, the electrodeposited shape is rather the etched. As a result, the uniformity of surface quality and electrodeposition rate could be improved by conducting experiments under constant conditions of electrolyte temperature and current density.

Effect of Ultrasound During Pretreatment on the Electrochemical Etching of Aluminum and Its Capacitance (초음파를 이용한 전처리가 알루미늄의 전기화학적 에칭 및 정전용량에 미치는 효과)

  • Jung, Insoo;Tak, Yongsug;Park, Kangyong;Kim, Hyungi;Kim, Sungsoo
    • Corrosion Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.37-42
    • /
    • 2011
  • Aluminum was electrochemically etched in acid solution and the surface area was magnified by the formation of etch pits. Etched aluminum was covered with a compact and dense dielectric oxide film by anodization and applied to the aluminum electrolytic capacitor electrode. Capacitance of aluminum electrolytic capacitor is closely related with surface area, which depends on size and number of etch pits. Size of etch pits need to be controlled because inside of the pits can be buried by the formation of dielectric oxide film. In this work, the effect of ultrasound pretreatment on the aluminum etch pit formation and capacitance were investigated. Additionally, the relationship between the second etching effect on pit size and capacitance was studied.

Fabrication of uniform micropattern arrays using nonionic surfactant-based wet etching process of high purity aluminum (비이온계 계면활성제기반 고순도 알루미늄 습식식각을 통한 균일한 마이크로패턴 어레이 제작)

  • Jang, Woong-Ki;Jeon, Eun Chae;Choi, Doo Sun;Kim, Byeong Hee;Seo, Young Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.4
    • /
    • pp.13-20
    • /
    • 2014
  • In this paper, the effects of a nonionic surfactant on the etch uniformity and the etch profile during the wet-etching process of high-purity aluminum were investigated for the fabrication of uniform micropattern arrays. To improve the surface roughness of a high-purity aluminum plate, a mechanical lapping process and an electrolytic polishing process were used. After electrolytic polishing process, the surface roughness, Ra, of the high-purity aluminum plate was improved from $1.25{\mu}m$ to $0.02{\mu}m$. A photoresist was used as an etching mask during the aluminum etching process, where the mixture of phosphoric acid, acetic acid, nitric acid, a nonionic surfactant and water was used as the aluminum etchant. Different amounts of the Triton X-100 nonionic surfactant were added to the aluminum etchant to investigate the effect of a nonionic surfactant during the wet-etching process of high-purity aluminum. The etch rate and the etch profile were measured by an optical interferometer and a scanning electron microscope.